論文の概要: Coordinated Power Smoothing Control for Wind Storage Integrated System with Physics-informed Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.17838v1
- Date: Tue, 17 Dec 2024 11:37:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 07:32:24.395266
- Title: Coordinated Power Smoothing Control for Wind Storage Integrated System with Physics-informed Deep Reinforcement Learning
- Title(参考訳): 物理インフォームドディープ強化学習による風力発電統合システムの協調電力平滑化制御
- Authors: Shuyi Wang, Huan Zhao, Yuji Cao, Zibin Pan, Guolong Liu, Gaoqi Liang, Junhua Zhao,
- Abstract要約: 電力平滑化制御(PSC)を用いた風力発電統合システムは, 効率と信頼性を両立させる有望なソリューションとして浮上している。
既存のPSC戦略は、バッテリと風力タービンの複雑な制御相互作用を見落とし、ウェイク効果やバッテリ劣化コストを考慮していない。
本稿では,これらの課題を効果的に解決するために,階層レベルの新しい協調制御フレームワークを考案した。
- 参考スコア(独自算出の注目度): 13.266525968718275
- License:
- Abstract: The Wind Storage Integrated System with Power Smoothing Control (PSC) has emerged as a promising solution to ensure both efficient and reliable wind energy generation. However, existing PSC strategies overlook the intricate interplay and distinct control frequencies between batteries and wind turbines, and lack consideration of wake effect and battery degradation cost. In this paper, a novel coordinated control framework with hierarchical levels is devised to address these challenges effectively, which integrates the wake model and battery degradation model. In addition, after reformulating the problem as a Markov decision process, the multi-agent reinforcement learning method is introduced to overcome the bi-level characteristic of the problem. Moreover, a Physics-informed Neural Network-assisted Multi-agent Deep Deterministic Policy Gradient (PAMA-DDPG) algorithm is proposed to incorporate the power fluctuation differential equation and expedite the learning process. The effectiveness of the proposed methodology is evaluated through simulations conducted in four distinct scenarios using WindFarmSimulator (WFSim). The results demonstrate that the proposed algorithm facilitates approximately an 11% increase in total profit and a 19% decrease in power fluctuation compared to the traditional methods, thereby addressing the dual objectives of economic efficiency and grid-connected energy reliability.
- Abstract(参考訳): 電力平滑化制御(PSC)を用いた風力発電統合システムは, 効率と信頼性の両方を確保すべく, 有望なソリューションとして登場した。
しかし、既存のPSC戦略は、バッテリーと風力タービンの間の複雑な相互作用と明確な制御周波数を見落とし、ウェイク効果やバッテリー劣化コストを考慮していない。
本稿では,これらの課題を効果的に解決するために,階層レベルの協調制御フレームワークを考案し,ウェイクモデルとバッテリ劣化モデルを統合した。
また,マルコフ決定過程として問題を再構成した後,多エージェント強化学習法を導入し,この問題の両レベル特性を克服した。
さらに, パワー変動微分方程式を取り入れ, 学習プロセスの高速化を図るために, 物理インフォームドニューラルネットワークを用いた多エージェントディープ決定性ポリシー勾配 (PAMA-DDPG) アルゴリズムを提案する。
提案手法の有効性は,WindFarmSimulator (WFSim) を用いた4つのシナリオのシミュレーションにより評価した。
その結果,提案アルゴリズムは従来の手法に比べて11%の利益増加と19%の電力変動を促進し,経済効率とグリッド接続型エネルギー信頼性の両立を図った。
関連論文リスト
- Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
本稿では,動的負荷スケジューリングの課題に対処する強化学習(RL)手法を提案する。
提案手法は実時間負荷スケジューリングのためのロバストでスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-23T09:16:22Z) - Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
フェデレートラーニング(FL)では、エッジデバイスがローカルトレーニングを実行し、パラメータサーバと情報を交換する必要がある。
実用FLシステムにおける重要な課題は、バッテリ限定エッジ装置の急激なエネルギー枯渇である。
FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
論文 参考訳(メタデータ) (2024-05-17T03:41:40Z) - Safety Constrained Multi-Agent Reinforcement Learning for Active Voltage Control [34.95810473913879]
能動電圧制御問題を制約付きマルコフゲームとして定式化し,安全性に制約のあるMARLアルゴリズムを提案する。
実世界規模シナリオを用いた配電ネットワークシミュレーション環境における本手法の評価を行った。
論文 参考訳(メタデータ) (2024-05-14T09:03:00Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - A novel ANROA based control approach for grid-tied multi-functional
solar energy conversion system [0.0]
三相格子型太陽太陽光発電システムに対する適応制御手法を提案し,検討した。
適応型ニューロファジィ推論システム(ANFIS)と降雨最適化アルゴリズム(ROA)を組み合わせた。
電圧変動、高調波、フリックなどの電力品質問題や、バランスの取れない負荷や反応電力の使用などを避けることが大きな目標である。
論文 参考訳(メタデータ) (2024-01-26T09:12:39Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
多モードプラグインハイブリッド電気自動車(PHEV)技術は、脱炭に寄与する経路の1つである。
本稿では,多モードPHEVのエネルギー管理のためのマルチエージェント深部強化学習(MADRL)制御法について検討する。
統合DDPG設定と0.2の関連性比を用いて、MADRLシステムはシングルエージェント学習システムと比較して最大4%のエネルギーを節約でき、従来のルールベースシステムに比べて最大23.54%のエネルギーを節約できる。
論文 参考訳(メタデータ) (2023-03-16T21:31:55Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
本稿では,変圧器を用いたマルチエージェント・アクタ・クリティカル・フレームワーク(T-MAAC)を提案する。
さらに、電圧制御タスクに適した新しい補助タスクトレーニングプロセスを採用し、サンプル効率を向上する。
論文 参考訳(メタデータ) (2022-06-08T07:48:42Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。