論文の概要: Can Machines Learn Robustly, Privately, and Efficiently?
- arxiv url: http://arxiv.org/abs/2312.14712v1
- Date: Fri, 22 Dec 2023 14:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 14:53:40.043658
- Title: Can Machines Learn Robustly, Privately, and Efficiently?
- Title(参考訳): 機械はロバスト、プライベート、効率的に学習できるのか?
- Authors: Youssef Allouah, Rachid Guerraoui, and John Stephan
- Abstract要約: 機械学習(ML)アプリケーションの成功は、膨大なデータセットと分散アーキテクチャに依存している。
プライバシと堅牢性の確保は、公共生活におけるMLの普及に不可欠である。
本稿では,分散アーキテクチャにおけるこれらの目的達成に伴うコストについて検討する。
- 参考スコア(独自算出の注目度): 7.278033100480175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of machine learning (ML) applications relies on vast datasets and
distributed architectures, which, as they grow, present challenges for ML. In
real-world scenarios, where data often contains sensitive information, issues
like data poisoning and hardware failures are common. Ensuring privacy and
robustness is vital for the broad adoption of ML in public life. This paper
examines the costs associated with achieving these objectives in distributed
architectures. We overview the meanings of privacy and robustness in
distributed ML, and clarify how they can be achieved efficiently in isolation.
However, we contend that the integration of these objectives entails a notable
compromise in computational efficiency. We delve into this intricate balance,
exploring the challenges and solutions for privacy, robustness, and
computational efficiency in ML applications.
- Abstract(参考訳): 機械学習(ML)アプリケーションの成功は、膨大なデータセットと分散アーキテクチャに依存し、成長するにつれて、MLの課題が提示される。
データがセンシティブな情報を含む実世界のシナリオでは、データ中毒やハードウェア障害といった問題が一般的である。
プライバシと堅牢性の確保は、公共生活におけるMLの普及に不可欠である。
本稿では,分散アーキテクチャにおけるこれらの目的達成に伴うコストについて検討する。
分散MLにおけるプライバシとロバスト性の意味を概説し、それらを分離して効率的に達成する方法を明らかにする。
しかし、これらの目的の統合は計算効率において顕著な妥協をもたらすと我々は主張する。
この複雑なバランスを掘り下げて、MLアプリケーションにおけるプライバシ、堅牢性、計算効率の課題と解決策を探求します。
関連論文リスト
- Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
社会的利益にもかかわらず、最近の研究はグラフMLモデルの普及に伴う重要な安全性上の懸念を浮き彫りにしている。
安全性を重視した設計が欠如しているため、これらのモデルは信頼性の低い予測を導き、一般化性の低下を示し、データの機密性を侵害することができる。
金融詐欺検出のような高額なシナリオでは、これらの脆弱性は個人と社会の両方を全般的に危険に晒す可能性がある。
論文 参考訳(メタデータ) (2024-05-17T18:11:11Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
プライバシー保護機械学習(PPML)は、機密情報の保護によってこの問題に対処する。
NRI-DCフレームワークは革新的なアプローチとして登場し、機関間の「データアイランド」問題を解消する可能性がある。
本研究は,これらの協調関数の厳密な理論的基礎を確立し,新しい定式化を導入する。
論文 参考訳(メタデータ) (2024-03-05T08:52:16Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
プライバシ保存機械学習(PPML)メソッドは、機械学習モデルのプライバシとセキュリティを保護するために導入された。
現代の暗号方式であるHybrid Homomorphic Encryption (HHE)が最近登場した。
心電図データに基づく心疾患の分類のためのHHEベースのPPMLアプリケーションの開発と評価を行った。
論文 参考訳(メタデータ) (2024-01-26T13:12:52Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
論文 参考訳(メタデータ) (2023-09-27T00:10:29Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
本稿では,少数の対向マシンに対してロバスト性を保証するアルゴリズムによって得られた誤差を,まず厳密に解析する。
私たちの分析は、プライバシ、堅牢性、ユーティリティの基本的なトレードオフを示しています。
論文 参考訳(メタデータ) (2023-02-09T17:24:18Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
本稿では,情報漏洩の基本的な境界について検討する。
最悪の会員推論攻撃の成功率を特定し、拘束します。
感度の高い属性とモデルパラメータの間の相互情報の境界を導出する。
論文 参考訳(メタデータ) (2021-05-09T08:49:14Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
敵対的ロバスト性はディープネットワークの脆弱性と本質的特徴を明らかにすることで近年広く研究されている。
本研究では,長尾分布下における敵対的脆弱性と防御について検討する。
我々は、スケール不変とデータ再分散という2つの専用モジュールからなるクリーンで効果的なフレームワークであるRoBalを提案する。
論文 参考訳(メタデータ) (2021-04-06T17:53:08Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。