The Rate-Distortion-Perception-Classification Tradeoff: Joint Source Coding and Modulation via Inverse-Domain GANs
- URL: http://arxiv.org/abs/2312.14792v2
- Date: Thu, 6 Jun 2024 10:52:14 GMT
- Title: The Rate-Distortion-Perception-Classification Tradeoff: Joint Source Coding and Modulation via Inverse-Domain GANs
- Authors: Junli Fang, João F. C. Mota, Baoshan Lu, Weicheng Zhang, Xuemin Hong,
- Abstract summary: We show the existence of a strict tradeoff between channel rate, distortion perception, and classification accuracy.
We propose two image compression methods to navigate that tradeoff: theCO algorithm and ID-GAN, which is more general compression.
They also demonstrate that the proposed ID-GAN algorithm balances image distortion, perception, classification accuracy, and significantly outperforms traditional separation-based methods.
- Score: 4.735670734773145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The joint source-channel coding (JSCC) framework leverages deep learning to learn from data the best codes for source and channel coding. When the output signal, rather than being binary, is directly mapped onto the IQ domain (complex-valued), we call the resulting framework joint source coding and modulation (JSCM). We consider a JSCM scenario and show the existence of a strict tradeoff between channel rate, distortion, perception, and classification accuracy, a tradeoff that we name RDPC. We then propose two image compression methods to navigate that tradeoff: the RDPCO algorithm which, under simple assumptions, directly solves the optimization problem characterizing the tradeoff, and an algorithm based on an inverse-domain generative adversarial network (ID-GAN), which is more general and achieves extreme compression. Simulation results corroborate the theoretical findings, showing that both algorithms exhibit the RDPC tradeoff. They also demonstrate that the proposed ID-GAN algorithm effectively balances image distortion, perception, and classification accuracy, and significantly outperforms traditional separation-based methods and recent deep JSCM architectures in terms of one or more of these metrics.
Related papers
- Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance.
Most present techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context.
In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss.
arXiv Detail & Related papers (2024-10-07T09:08:32Z) - Deep Joint Source-Channel Coding with Iterative Source Error Correction [11.41076729592696]
We propose an iterative source error correction (ISEC) decoding scheme for deep-learning-based joint source-channel code (Deep J SCC)
Given a noisyword received through the channel, we use a Deep J SCC encoder and decoder pair to update the code iteratively.
The proposed scheme produces more reliable source reconstruction results compared to the baseline when the channel noise characteristics do not match the ones used during training.
arXiv Detail & Related papers (2023-02-17T22:50:58Z) - Generative Joint Source-Channel Coding for Semantic Image Transmission [29.738666406095074]
Joint source-channel coding (JSCC) schemes using deep neural networks (DNNs) provide promising results in wireless image transmission.
We propose two novel J SCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission.
arXiv Detail & Related papers (2022-11-24T19:14:27Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Perceptual Learned Source-Channel Coding for High-Fidelity Image
Semantic Transmission [7.692038874196345]
In this paper, we introduce adversarial losses to optimize deep J SCC.
Our new deep J SCC architecture combines encoder, wireless channel, decoder/generator, and discriminator.
A user study confirms that achieving the perceptually similar end-to-end image transmission quality, the proposed method can save about 50% wireless channel bandwidth cost.
arXiv Detail & Related papers (2022-05-26T03:05:13Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.