論文の概要: Sampling and estimation on manifolds using the Langevin diffusion
- arxiv url: http://arxiv.org/abs/2312.14882v2
- Date: Sat, 15 Jun 2024 15:53:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 07:14:24.112368
- Title: Sampling and estimation on manifolds using the Langevin diffusion
- Title(参考訳): ランジュバン拡散を用いた多様体上のサンプリングと推定
- Authors: Karthik Bharath, Alexander Lewis, Akash Sharma, Michael V Tretyakov,
- Abstract要約: 離散化マルコフ過程に基づく$mu_phi $の線形汎函数の2つの推定器を検討する。
誤差境界は、本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
- 参考スコア(独自算出の注目度): 45.57801520690309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion with invariant measure $\text{d}\mu_\phi \propto e^{-\phi} \mathrm{dvol}_g $ on a compact Riemannian manifold. Two estimators of linear functionals of $\mu_\phi $ based on the discretized Markov process are considered: a time-averaging estimator based on a single trajectory and an ensemble-averaging estimator based on multiple independent trajectories. Imposing no restrictions beyond a nominal level of smoothness on $\phi$, first-order error bounds, in discretization step size, on the bias and variance/mean-square error of both estimators are derived. The order of error matches the optimal rate in Euclidean and flat spaces, and leads to a first-order bound on distance between the invariant measure $\mu_\phi$ and a stationary measure of the discretized Markov process. This order is preserved even upon using retractions when exponential maps are unavailable in closed form, thus enhancing practicality of the proposed algorithms. Generality of the proof techniques, which exploit links between two partial differential equations and the semigroup of operators corresponding to the Langevin diffusion, renders them amenable for the study of a more general class of sampling algorithms related to the Langevin diffusion. Conditions for extending analysis to the case of non-compact manifolds are discussed. Numerical illustrations with distributions, log-concave and otherwise, on the manifolds of positive and negative curvature elucidate on the derived bounds and demonstrate practical utility of the sampling algorithm.
- Abstract(参考訳): 誤差境界は、コンパクトリーマン多様体上の不変測度 $\text{d}\mu_\phi \propto e^{-\phi} \mathrm{dvol}_g $ で本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
離散化されたマルコフ過程に基づく$\mu_\phi $の線形汎関数の2つの推定器は、単一の軌跡に基づく時間分解推定器と、複数の独立軌跡に基づくアンサンブル吸収推定器である。
差分化ステップサイズにおける$\phi$, 1次誤差境界上の名目的滑らかさ以上の制限は、両方の推定器のバイアスと分散/平均二乗誤差を導出する。
誤差の順序はユークリッド空間と平坦空間の最適速度と一致し、不変測度 $\mu_\phi$ と離散化されたマルコフ過程の定常測度の間の距離上の一階境界につながる。
この順序は指数写像がクローズドな形で利用できない場合にも取り除かれるため、提案アルゴリズムの実用性が向上する。
2つの偏微分方程式とランゲヴィン拡散に対応する作用素の半群の間のリンクを利用する証明技法の一般性は、ランゲヴィン拡散に関連するより一般的なサンプリングアルゴリズムの研究にそれらを適用可能である。
非コンパクト多様体の場合まで解析を拡張するための条件について論じる。
導出境界上の正および負の曲率の多様体上の分布、対数凹、その他の数値図解はサンプリングアルゴリズムの実用性を実証する。
関連論文リスト
- Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems [4.42498215122234]
本研究では,関数空間におけるベイズ逆問題の解法を提案する。
可能性の対数共空性は仮定せず、非線型逆問題と互換性がある。
従来の正規化法で確立された固定点法に着想を得た新しい収束解析を行う。
論文 参考訳(メタデータ) (2024-05-24T16:17:01Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
本稿では,Langevinアルゴリズムの定常分布に対する混合時間の特徴について述べる。
本稿では,差分プライバシー文献からサンプリング文献へのアプローチを紹介する。
論文 参考訳(メタデータ) (2022-10-16T05:11:16Z) - Convergence of the Riemannian Langevin Algorithm [10.279748604797911]
計量$g$の多様体上の自然測度に関して、密度$nu$の分布からサンプリングする問題を研究する。
対数障壁によって定義されるポリトープに制限された等尺的密度をサンプリングする手法が,本手法の特例である。
論文 参考訳(メタデータ) (2022-04-22T16:56:00Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Spectral convergence of diffusion maps: improved error bounds and an
alternative normalisation [0.6091702876917281]
本稿では,分布がハイパートーラス上でサポートされているモデルの場合の誤差境界を改善するために,新しい手法を用いる。
我々は、スペクトルデータと演算子離散化のノルム収束の両方に対して、長年のポイントワイズ誤差境界と一致する。
また、シンクホーン重みに基づく拡散写像の別の正規化も導入する。
論文 参考訳(メタデータ) (2020-06-03T04:23:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。