論文の概要: Gaussian Harmony: Attaining Fairness in Diffusion-based Face Generation
Models
- arxiv url: http://arxiv.org/abs/2312.14976v1
- Date: Thu, 21 Dec 2023 20:06:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-31 03:14:47.322956
- Title: Gaussian Harmony: Attaining Fairness in Diffusion-based Face Generation
Models
- Title(参考訳): gaussian harmony:拡散に基づく顔生成モデルにおける公平性の実現
- Authors: Basudha Pal, Arunkumar Kannan, Ram Prabhakar Kathirvel, Alice J.
O'Toole, Rama Chellappa
- Abstract要約: 拡散モデルは生成過程のバイアスを増幅し、年齢、性別、人種などの敏感な属性の分布の不均衡をもたらす。
ガウス混合モデル(GMM)を用いて拡散モデルの潜時空間における顔特性の手段を局在させることによりバイアスを軽減する。
その結果, 提案手法は, 生成したサンプルの品質を保ちながら, 表現フェアネスの観点から, より公平なデータ生成につながることが示された。
- 参考スコア(独自算出の注目度): 31.688873613213392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have achieved great progress in face generation. However,
these models amplify the bias in the generation process, leading to an
imbalance in distribution of sensitive attributes such as age, gender and race.
This paper proposes a novel solution to this problem by balancing the facial
attributes of the generated images. We mitigate the bias by localizing the
means of the facial attributes in the latent space of the diffusion model using
Gaussian mixture models (GMM). Our motivation for choosing GMMs over other
clustering frameworks comes from the flexible latent structure of diffusion
model. Since each sampling step in diffusion models follows a Gaussian
distribution, we show that fitting a GMM model helps us to localize the
subspace responsible for generating a specific attribute. Furthermore, our
method does not require retraining, we instead localize the subspace on-the-fly
and mitigate the bias for generating a fair dataset. We evaluate our approach
on multiple face attribute datasets to demonstrate the effectiveness of our
approach. Our results demonstrate that our approach leads to a more fair data
generation in terms of representational fairness while preserving the quality
of generated samples.
- Abstract(参考訳): 拡散モデルは顔生成に大きな進歩を遂げた。
しかし、これらのモデルは生成過程におけるバイアスを増幅し、年齢、性別、人種などの敏感な属性の分布の不均衡をもたらす。
本稿では,生成画像の顔特性のバランスをとることで,この問題に対する新たな解決策を提案する。
ガウス混合モデル(GMM)を用いて拡散モデルの潜時空間における顔特性の手段を局在させることによりバイアスを軽減する。
他のクラスタリングフレームワークよりもGMMを選択する動機は、拡散モデルの柔軟な潜在構造から来ています。
拡散モデルにおける各サンプリングステップはガウス分布に従うので、GMMモデルの適合は特定の属性を生成するための部分空間のローカライズに役立ちます。
さらに,本手法では再トレーニングを必要とせず,部分空間をオンザフライでローカライズし,公平なデータセットを生成するバイアスを軽減する。
我々は,複数の顔属性データセットに対するアプローチを評価し,その効果を実証する。
その結果, 提案手法は, 生成したサンプルの品質を保ちながら, 表現フェアネスの観点からより公平なデータ生成につながることが示された。
関連論文リスト
- Balancing Act: Distribution-Guided Debiasing in Diffusion Models [31.38505986239798]
拡散モデル(DM)は、前例のない画像生成能力を持つ強力な生成モデルとして登場した。
DMはトレーニングデータセットに存在するバイアスを反映します。
本稿では、追加データやモデル再学習に頼ることなく、DMをデバイアスする手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T09:53:17Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
本稿では,既存のバイアス付きGANからGAN(unbiased generative adversarial Network)を構築するためのアプローチを提案する。
Flickr Faces High Quality (FFHQ) データセットを用いて、人種的公平性をトレーニングしながら、StyleGAN2モデルの結果を示す。
また,不均衡なCIFAR10データセットに適用することで,我々のアプローチをさらに検証する。
論文 参考訳(メタデータ) (2023-08-16T19:20:06Z) - Don't be so negative! Score-based Generative Modeling with
Oracle-assisted Guidance [12.039478020062608]
我々は新しい拡散確率モデル(DDPM)手法であるGen-neGを開発した。
提案手法は, 生成過程を誘導する拡散モデルにおいて, GAN(Generative Adversarial Network)と差別化誘導に基づいて構築する。
我々は、自動運転シミュレータにおける衝突回避や、安全で保護された人間の動き生成などの応用において、Gen-neGの有用性を実証的に確立する。
論文 参考訳(メタデータ) (2023-07-31T07:52:00Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-10T18:22:31Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - Diffusing Gaussian Mixtures for Generating Categorical Data [21.43283907118157]
本稿では,高品質なサンプル生成に着目した拡散モデルに基づく分類データの生成モデルを提案する。
評価手法は、分類データを生成するための異なる生成モデルの能力と限界を強調した。
論文 参考訳(メタデータ) (2023-03-08T14:55:32Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Improving the Fairness of Deep Generative Models without Retraining [41.6580482370894]
GAN(Generative Adversarial Networks)は、観測データの基盤となる分布を学習し、顔合成を進める。
高品質な生成顔にもかかわらず、一部の少数グループはバイアス画像生成プロセスのためにトレーニングされたモデルから生成されることは稀である。
アウトプット顔面特性を再訓練することなくバランスをとるための解釈可能なベースライン法を提案する。
論文 参考訳(メタデータ) (2020-12-09T03:20:41Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。