Identifying built environment factors influencing driver yielding behavior at unsignalized intersections: A naturalistic open-source dataset collected in Minnesota
- URL: http://arxiv.org/abs/2312.15113v2
- Date: Fri, 18 Oct 2024 20:11:32 GMT
- Title: Identifying built environment factors influencing driver yielding behavior at unsignalized intersections: A naturalistic open-source dataset collected in Minnesota
- Authors: Tianyi Li, Joshua Klavins, Te Xu, Niaz Mahmud Zafri, Raphael Stern,
- Abstract summary: Many factors influence the yielding result of a driver-pedestrian interaction, including traffic volume, vehicle speed, roadway characteristics, etc.
Our study introduces an extensive open-source dataset, compiled from video data at 18 unsignalized intersections across Minnesota.
Documenting more than 3000 interactions, this dataset provides a detailed view of driver-pedestrian interactions and over 50 distinct contextual variables.
- Score: 1.7810134788247751
- License:
- Abstract: Many factors influence the yielding result of a driver-pedestrian interaction, including traffic volume, vehicle speed, roadway characteristics, etc. While individual aspects of these interactions have been explored, comprehensive, naturalistic studies, particularly those considering the built environment's influence on driver-yielding behavior, are lacking. To address this gap, our study introduces an extensive open-source dataset, compiled from video data at 18 unsignalized intersections across Minnesota. Documenting more than 3000 interactions, this dataset provides a detailed view of driver-pedestrian interactions and over 50 distinct contextual variables. The data, which covers individual driver-pedestrian interactions and contextual factors, is made publicly available at https://github.com/tianyi17/pedestrian_yielding_data_MN. Using logistic regression, we developed a classification model that predicts driver yielding based on the identified variables. Our analysis indicates that vehicle speed, the presence of parking lots, proximity to parks or schools, and the width of major road crossings significantly influence driver yielding at unsignalized intersections. Through our findings and by publishing one of the most comprehensive driver-pedestrian datasets in the United States, our study will support communities across Minnesota and the United States in their ongoing efforts to improve road safety for pedestrians and be helpful for automated vehicle design.
Related papers
- DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
arXiv Detail & Related papers (2024-03-25T17:59:01Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Cross or Wait? Predicting Pedestrian Interaction Outcomes at Unsignalized Crossings [12.800489342833275]
We use machine learning to predict pedestrian crossing behavior including pedestrian crossing decision, crossing initiation time (CIT), and crossing duration (CD) when interacting with vehicles at unsignalized crossings.
Compared with the logistic regression baseline model, our proposed neural network model improves the prediction accuracy and F1 score by 4.46% and 3.23%, respectively.
Our model also reduces the root mean squared error (RMSE) for CIT and CD by 21.56% and 30.14% compared with the linear regression model.
arXiv Detail & Related papers (2023-04-17T13:20:04Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving [42.69638782267657]
We present a new and complex traffic dataset, METEOR, which captures traffic patterns in unstructured scenarios in India.
METEOR consists of more than 1000 one-minute video clips, over 2 million annotated frames with ego-vehicle trajectories, and more than 13 million bounding boxes for surrounding vehicles or traffic agents.
We use our novel dataset to evaluate the performance of object detection and behavior prediction algorithms.
arXiv Detail & Related papers (2021-09-16T01:01:55Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Interaction Detection Between Vehicles and Vulnerable Road Users: A Deep
Generative Approach with Attention [9.442285577226606]
We propose a conditional generative model for interaction detection at intersections.
It aims to automatically analyze massive video data about the continuity of road users' behavior.
The model's efficacy was validated by testing on real-world datasets.
arXiv Detail & Related papers (2021-05-09T10:03:55Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.