LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient Multiplication for Neural Network Inference
- URL: http://arxiv.org/abs/2411.11852v1
- Date: Fri, 01 Nov 2024 02:54:11 GMT
- Title: LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient Multiplication for Neural Network Inference
- Authors: Yanyue Xie, Zhengang Li, Dana Diaconu, Suranga Handagala, Miriam Leeser, Xue Lin,
- Abstract summary: This paper introduces LUTMUL, which harnesses the potential of look-up tables (LUTs) for performing multiplications.
By exploiting this advantage of LUTs, our method demonstrates a potential boost in the performance of FPGA-based neural network accelerators.
- Score: 25.342107763021147
- License:
- Abstract: For FPGA-based neural network accelerators, digital signal processing (DSP) blocks have traditionally been the cornerstone for handling multiplications. This paper introduces LUTMUL, which harnesses the potential of look-up tables (LUTs) for performing multiplications. The availability of LUTs typically outnumbers that of DSPs by a factor of 100, offering a significant computational advantage. By exploiting this advantage of LUTs, our method demonstrates a potential boost in the performance of FPGA-based neural network accelerators with a reconfigurable dataflow architecture. Our approach challenges the conventional peak performance on DSP-based accelerators and sets a new benchmark for efficient neural network inference on FPGAs. Experimental results demonstrate that our design achieves the best inference speed among all FPGA-based accelerators, achieving a throughput of 1627 images per second and maintaining a top-1 accuracy of 70.95% on the ImageNet dataset.
Related papers
- Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks (SNNs) have emerged as a promising approach to improve the energy efficiency of machine learning models.
We develop a hardware-software co-optimisation strategy to port software-trained deep neural networks (DNN) to reduced-precision spiking models.
arXiv Detail & Related papers (2024-10-07T05:04:13Z) - Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA [10.630802853096462]
Modern Neural Network (NN) architectures heavily rely on vast numbers of multiply-accumulate arithmetic operations.
This paper proposes a high- throughput, scalable and energy efficient non-element-wise matrix multiplication unit on FPGAs.
Using our AMU achieves up to 9x higher throughput and 112x higher energy efficiency over the state-of-the-art solutions for the FPGA-based Quantised Neural Network (QNN) accelerators.
arXiv Detail & Related papers (2024-07-02T15:28:10Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - FireFly: A High-Throughput Hardware Accelerator for Spiking Neural
Networks with Efficient DSP and Memory Optimization [6.966706170499345]
Spiking neural networks (SNNs) have been widely used due to their strong biological interpretability and high energy efficiency.
Most SNN hardware implementations for field-programmable gate arrays (FPGAs) cannot meet arithmetic or memory efficiency requirements.
We propose an FPGA accelerator that can process spikes generated by the firing neuron on-the-fly (FireFly)
arXiv Detail & Related papers (2023-01-05T04:28:07Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments.
In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network.
arXiv Detail & Related papers (2021-02-08T05:55:47Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.