論文の概要: The Challenge of Using LLMs to Simulate Human Behavior: A Causal Inference Perspective
- arxiv url: http://arxiv.org/abs/2312.15524v2
- Date: Tue, 21 Jan 2025 21:34:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:20.073887
- Title: The Challenge of Using LLMs to Simulate Human Behavior: A Causal Inference Perspective
- Title(参考訳): LLMを用いた人間の行動シミュレーションの課題--因果推論の視点から
- Authors: George Gui, Olivier Toubia,
- Abstract要約: 大きな言語モデル(LLM)は、人間の振る舞いをシミュレートする素晴らしい可能性を示している。
実験をシミュレートする上での根本的な課題を特定します。
LLMを模擬した被験者が実験設計に盲目である場合、治療のバリエーションは不特定変数に系統的に影響を及ぼす。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License:
- Abstract: Large Language Models (LLMs) have shown impressive potential to simulate human behavior. We identify a fundamental challenge in using them to simulate experiments: when LLM-simulated subjects are blind to the experimental design (as is standard practice with human subjects), variations in treatment systematically affect unspecified variables that should remain constant, violating the unconfoundedness assumption. Using demand estimation as a context and an actual experiment as a benchmark, we show this can lead to implausible results. While confounding may in principle be addressed by controlling for covariates, this can compromise ecological validity in the context of LLM simulations: controlled covariates become artificially salient in the simulated decision process, which introduces focalism. This trade-off between unconfoundedness and ecological validity is usually absent in traditional experimental design and represents a unique challenge in LLM simulations. We formalize this challenge theoretically, showing it stems from ambiguous prompting strategies, and hence cannot be fully addressed by improving training data or by fine-tuning. Alternative approaches that unblind the experimental design to the LLM show promise. Our findings suggest that effectively leveraging LLMs for experimental simulations requires fundamentally rethinking established experimental design practices rather than simply adapting protocols developed for human subjects.
- Abstract(参考訳): 大きな言語モデル(LLM)は、人間の振る舞いをシミュレートする素晴らしい可能性を示している。
LLMを模擬した被験者が実験設計に盲目である場合(人体では標準的な慣行である)、治療のバリエーションは、一定であるべき不特定変数に体系的に影響を及ぼし、不定性仮定に違反する。
需要推定をコンテキストとして、実際の実験をベンチマークとして使用することにより、これは予測不可能な結果をもたらす可能性があることを示す。
コンバウンディングは、原則として共変量を制御することで対処できるが、これはLLMシミュレーションの文脈で生態学的妥当性を損なう可能性がある。
この不整合性と生態的妥当性のトレードオフは通常、従来の実験設計では欠落しており、LLMシミュレーションにおいてユニークな課題である。
我々は、この課題を理論的に定式化し、曖昧なプロンプト戦略に由来することを示し、それゆえ、トレーニングデータの改善や微調整によって完全に対処できないことを示す。
実験的な設計をLSMに開放する別のアプローチは、有望である。
実験シミュレーションにLLMを効果的に活用するには,人体に開発されたプロトコルを単に適応させるのではなく,確立した設計プラクティスを根本的に再考する必要があることが示唆された。
関連論文リスト
- Using LLMs for Explaining Sets of Counterfactual Examples to Final Users [0.0]
自動意思決定シナリオでは、因果推論手法は基礎となるデータ生成プロセスを分析することができる。
カウンターファクトな例では、最小限の要素が変更される仮説的なシナリオを探求する。
本稿では,アクションの自然言語説明を生成するために,反事実を用いた新しい多段階パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-27T15:13:06Z) - Simulating Field Experiments with Large Language Models [0.6144680854063939]
本稿では,大規模言語モデル(LLM)のフィールド実験への応用を先導する。
観測者モードと参加者モードという2つの新しいプロンプト戦略を導入することで、複雑なフィールド設定において、結果の予測と参加者応答の再現の両方を行うLLMの能力を実証する。
以上の結果から,特定のシナリオにおいて実際の実験結果と良好な一致を示し,観察モードでは66%の刺激精度が得られた。
論文 参考訳(メタデータ) (2024-08-19T03:41:43Z) - Do Large Language Models Exhibit Cognitive Dissonance? Studying the Difference Between Revealed Beliefs and Stated Answers [13.644277507363036]
我々は,これらの能力が調整プロンプトとMCQの外部で測定可能かどうかを検討する。
以上の結果から, LLMの回答は, Stated Answer と大きく異なることが示唆された。
テキスト補完はLLMの中核にあるため,これらの結果は共通評価手法が部分画像のみを提供する可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-06-21T08:56:35Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - Are You Sure? Challenging LLMs Leads to Performance Drops in The
FlipFlop Experiment [82.60594940370919]
大規模言語モデル(LLM)のマルチターン動作を研究するためのFlipFlop実験を提案する。
モデルが平均46%の時間で回答を反転させ、全てのモデルが最初の予測と最終予測の間に精度を低下させ、平均17%の低下(FlipFlop効果)を示す。
我々はオープンソースのLLMで微調整実験を行い、合成されたデータに対する微調整は、性能劣化を60%低減させることができるが、サイコファンティックな振る舞いを完全には解決できないことを発見した。
論文 参考訳(メタデータ) (2023-11-14T23:40:22Z) - From Values to Opinions: Predicting Human Behaviors and Stances Using
Value-Injected Large Language Models [10.520548925719565]
本稿では,価値注入型大言語モデル(LLM)を用いて意見や行動を予測することを提案する。
VIMの有効性を検証するために,4つのタスクについて一連の実験を行った。
以上の結果から,基本的アプローチよりも価値注入型LCMの方が,意見や行動の予測が優れていることが示唆された。
論文 参考訳(メタデータ) (2023-10-27T02:18:10Z) - Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment [52.592199835286394]
オープン情報抽出(OIE)は、自然文から客観的な構造化された知識を抽出することを目的としている。
大規模言語モデル(LLM)は、テキスト内学習能力に優れています。
論文 参考訳(メタデータ) (2023-10-16T17:11:42Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。