Knowledge Distillation of LLM for Automatic Scoring of Science Education Assessments
- URL: http://arxiv.org/abs/2312.15842v3
- Date: Tue, 11 Jun 2024 18:01:09 GMT
- Title: Knowledge Distillation of LLM for Automatic Scoring of Science Education Assessments
- Authors: Ehsan Latif, Luyang Fang, Ping Ma, Xiaoming Zhai,
- Abstract summary: This study proposes a method for knowledge distillation (KD) of fine-tuned Large Language Models (LLMs)
We specifically target the challenge of deploying these models on resource-constrained devices.
- Score: 4.541309099803903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a method for knowledge distillation (KD) of fine-tuned Large Language Models (LLMs) into smaller, more efficient, and accurate neural networks. We specifically target the challenge of deploying these models on resource-constrained devices. Our methodology involves training the smaller student model (Neural Network) using the prediction probabilities (as soft labels) of the LLM, which serves as a teacher model. This is achieved through a specialized loss function tailored to learn from the LLM's output probabilities, ensuring that the student model closely mimics the teacher's performance. To validate the performance of the KD approach, we utilized a large dataset, 7T, containing 6,684 student-written responses to science questions and three mathematical reasoning datasets with student-written responses graded by human experts. We compared accuracy with state-of-the-art (SOTA) distilled models, TinyBERT, and artificial neural network (ANN) models. Results have shown that the KD approach has 3% and 2% higher scoring accuracy than ANN and TinyBERT, respectively, and comparable accuracy to the teacher model. Furthermore, the student model size is 0.03M, 4,000 times smaller in parameters and x10 faster in inferencing than the teacher model and TinyBERT, respectively. The significance of this research lies in its potential to make advanced AI technologies accessible in typical educational settings, particularly for automatic scoring.
Related papers
- Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs)
We propose a KD approach that distills LLMs into smaller language models.
Our method is scalable for different model families with 120M to 13B parameters.
arXiv Detail & Related papers (2023-06-14T14:44:03Z) - Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on
Limit-Trained Multi-Teacher Models [4.711401719735324]
Knowledge Distillation (KD) has been proposed as a compression method and an acceleration technology.
KD is an efficient learning strategy that can transfer knowledge from a burdensome model to a lightweight model.
We develop a KD-based deep model for prostate MRI segmentation in this work by combining features-based distillation with Kullback-Leibler divergence, Lovasz, and Dice losses.
arXiv Detail & Related papers (2023-03-16T17:15:08Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Knowledge Distillation with Representative Teacher Keys Based on
Attention Mechanism for Image Classification Model Compression [1.503974529275767]
knowledge distillation (KD) has been recognized as one of the effective method of model compression to decrease the model parameters.
Inspired by attention mechanism, we propose a novel KD method called representative teacher key (RTK)
Our proposed RTK can effectively improve the classification accuracy of the state-of-the-art attention-based KD method.
arXiv Detail & Related papers (2022-06-26T05:08:50Z) - Boosting Light-Weight Depth Estimation Via Knowledge Distillation [21.93879961636064]
We propose a lightweight network that can accurately estimate depth maps using minimal computing resources.
We achieve this by designing a compact model architecture that maximally reduces model complexity.
Our method achieves comparable performance to state-of-the-art methods while using only 1% of their parameters.
arXiv Detail & Related papers (2021-05-13T08:42:42Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Ensemble Knowledge Distillation for CTR Prediction [46.92149090885551]
We propose a new model training strategy based on knowledge distillation (KD)
KD is a teacher-student learning framework to transfer knowledge learned from a teacher model to a student model.
We propose some novel techniques to facilitate ensembled CTR prediction, including teacher gating and early stopping by distillation loss.
arXiv Detail & Related papers (2020-11-08T23:37:58Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
Current state-of-the-art object detectors are at the expense of high computational costs and are hard to deploy to low-end devices.
Knowledge distillation, which aims at training a smaller student network by transferring knowledge from a larger teacher model, is one of the promising solutions for model miniaturization.
arXiv Detail & Related papers (2020-06-23T15:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.