LLM-SAP: Large Language Models Situational Awareness Based Planning
- URL: http://arxiv.org/abs/2312.16127v5
- Date: Sun, 16 Jun 2024 16:00:55 GMT
- Title: LLM-SAP: Large Language Models Situational Awareness Based Planning
- Authors: Liman Wang, Hanyang Zhong,
- Abstract summary: We employ a multi-agent reasoning framework to develop a methodology that anticipates and actively mitigates potential risks.
Our approach diverges from traditional automata theory by incorporating the complexity of human-centric interactions into the planning process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores integrating large language models (LLMs) with situational awareness-based planning (SAP) to enhance the decision-making capabilities of AI agents in dynamic and uncertain environments. We employ a multi-agent reasoning framework to develop a methodology that anticipates and actively mitigates potential risks through iterative feedback and evaluation processes. Our approach diverges from traditional automata theory by incorporating the complexity of human-centric interactions into the planning process, thereby expanding the planning scope of LLMs beyond structured and predictable scenarios. The results demonstrate significant improvements in the model's ability to provide comparative safe actions within hazard interactions, offering a perspective on proactive and reactive planning strategies. This research highlights the potential of LLMs to perform human-like action planning, thereby paving the way for more sophisticated, reliable, and safe AI systems in unpredictable real-world applications.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model [14.480267340831542]
We propose Structure-aware Planning with Accurate World Model (SWAP) for large language models (LLMs)
SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps.
We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks.
arXiv Detail & Related papers (2024-10-04T04:23:36Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - What's the Plan? Evaluating and Developing Planning-Aware Techniques for Language Models [7.216683826556268]
Large language models (LLMs) are increasingly used for applications that require planning capabilities.
We introduce SimPlan, a novel hybrid-method, and evaluate its performance in a new challenging setup.
arXiv Detail & Related papers (2024-02-18T07:42:49Z) - On the Prospects of Incorporating Large Language Models (LLMs) in
Automated Planning and Scheduling (APS) [23.024862968785147]
This paper investigates eight categories based on the unique applications of LLMs in addressing various aspects of planning problems.
A critical insight resulting from our review is that the true potential of LLMs unfolds when they are integrated with traditional symbolic planners.
arXiv Detail & Related papers (2024-01-04T19:22:09Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.