GenAI Mirage: The Impostor Bias and the Deepfake Detection Challenge in the Era of Artificial Illusions
- URL: http://arxiv.org/abs/2312.16220v2
- Date: Sun, 16 Jun 2024 09:28:40 GMT
- Title: GenAI Mirage: The Impostor Bias and the Deepfake Detection Challenge in the Era of Artificial Illusions
- Authors: Mirko Casu, Luca Guarnera, Pasquale Caponnetto, Sebastiano Battiato,
- Abstract summary: This paper examines the impact of cognitive biases on decision-making in forensics and digital forensics.
It assesses existing methods to mitigate biases and improve decision-making.
It introduces the novel "Impostor Bias", which arises as a systematic tendency to question the authenticity of multimedia content.
- Score: 6.184770966699034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the impact of cognitive biases on decision-making in forensics and digital forensics, exploring biases such as confirmation bias, anchoring bias, and hindsight bias. It assesses existing methods to mitigate biases and improve decision-making, introducing the novel "Impostor Bias", which arises as a systematic tendency to question the authenticity of multimedia content, such as audio, images, and videos, often assuming they are generated by AI tools. This bias goes beyond evaluators' knowledge levels, as it can lead to erroneous judgments and false accusations, undermining the reliability and credibility of forensic evidence. Impostor Bias stems from an a priori assumption rather than an objective content assessment, and its impact is expected to grow with the increasing realism of AI-generated multimedia products. The paper discusses the potential causes and consequences of Impostor Bias, suggesting strategies for prevention and counteraction. By addressing these topics, this paper aims to provide valuable insights, enhance the objectivity and validity of forensic investigations, and offer recommendations for future research and practical applications to ensure the integrity and reliability of forensic practices.
Related papers
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
Implicit biases are significant because they influence the decisions made by Large Language Models (LLMs)
Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias.
We introduce two novel psychological-inspired methodologies to reveal and measure implicit biases through prompt-based and decision-making tasks.
arXiv Detail & Related papers (2024-07-01T13:21:33Z) - Measuring and Addressing Indexical Bias in Information Retrieval [69.7897730778898]
PAIR framework supports automatic bias audits for ranked documents or entire IR systems.
After introducing DUO, we run an extensive evaluation of 8 IR systems on a new corpus of 32k synthetic and 4.7k natural documents.
A human behavioral study validates our approach, showing that our bias metric can help predict when and how indexical bias will shift a reader's opinion.
arXiv Detail & Related papers (2024-06-06T17:42:37Z) - Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP [3.9287497907611875]
There is growing concern over its potential to exacerbate existing biases and societal disparities.
This issue has prompted widespread attention from academia, policymakers, industry, and civil society.
Our research focuses on reviewing existing methodologies and ongoing investigations aimed at understanding annotation attributes that contribute to bias.
arXiv Detail & Related papers (2024-04-29T19:28:35Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
Recent research shows that pre-trained language models (PLMs) suffer from "prompt bias" in factual knowledge extraction.
This paper aims to improve the reliability of existing benchmarks by thoroughly investigating and mitigating prompt bias.
arXiv Detail & Related papers (2024-03-15T02:04:35Z) - The Media Bias Taxonomy: A Systematic Literature Review on the Forms and
Automated Detection of Media Bias [5.579028648465784]
This article summarizes the research on computational methods to detect media bias by systematically reviewing 3140 research papers published between 2019 and 2022.
We show that media bias detection is a highly active research field, in which transformer-based classification approaches have led to significant improvements in recent years.
arXiv Detail & Related papers (2023-12-26T18:13:52Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
I aim to devise data sets and methods to identify media bias.
My vision is to devise a system that helps news readers become aware of media coverage differences caused by bias.
arXiv Detail & Related papers (2021-12-26T10:46:32Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
We create three manually annotated datasets and test varying visualization strategies.
Results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group.
Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
arXiv Detail & Related papers (2021-05-20T10:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.