Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor
- URL: http://arxiv.org/abs/2407.15967v1
- Date: Mon, 22 Jul 2024 18:27:29 GMT
- Title: Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor
- Authors: Khalid Hassan, Saeed Moradi, Shaiful Chowdhury, Sara Rouhani,
- Abstract summary: This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
- Score: 2.052808596154225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of decentralized applications (dApps) has made smart contracts imperative components of blockchain technology. As many smart contracts process financial transactions, their security is paramount. Moreover, the immutability of blockchains makes vulnerabilities in smart contracts particularly challenging because it requires deploying a new version of the contract at a different address, incurring substantial fees paid in Ether. This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts. The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts. Our findings indicate that code metrics are ineffective in signalling the presence of vulnerabilities. Furthermore, we investigate whether vulnerabilities in newer versions of smart contracts are mitigated and identify that the number of vulnerabilities remains consistent over time. Finally, we examine the removal of self-admitted technical debt in contracts and uncover that most of the introduced debt has never been subsequently removed.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts.
It provides a list of frequent vulnerabilities and corresponding mitigation solutions.
It evaluates the community most widely used tools by executing and testing them on sample smart contracts.
arXiv Detail & Related papers (2024-03-28T19:36:53Z) - A security framework for Ethereum smart contracts [13.430752634838539]
This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
arXiv Detail & Related papers (2024-02-05T22:14:21Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.