論文の概要: RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation
- arxiv url: http://arxiv.org/abs/2312.16563v2
- Date: Thu, 22 Aug 2024 12:50:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 19:45:30.453624
- Title: RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation
- Title(参考訳): RDGCL:リコメンデーションのための反応拡散グラフコントラスト学習
- Authors: Jeongwhan Choi, Hyowon Wi, Chaejeong Lee, Sung-Bae Cho, Dongha Lee, Noseong Park,
- Abstract要約: コントラスト学習(CL)はレコメンダシステムを改善するための有望な手法である。
反応拡散グラフコントラスト学習モデル(RDGCL)と呼ばれるリコメンデータシステムのための新しいCL法を提案する。
提案したCLベーストレーニングは, 反応と拡散に基づく埋め込みの間に発生するため, グラフ強化は不要である。
- 参考スコア(独自算出の注目度): 36.33499876095934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning (CL) has emerged as a promising technique for improving recommender systems, addressing the challenge of data sparsity by using self-supervised signals from raw data. Integration of CL with graph convolutional network (GCN)-based collaborative filterings (CFs) has been explored in recommender systems. However, current CL-based recommendation models heavily rely on low-pass filters and graph augmentations. In this paper, inspired by the reaction-diffusion equation, we propose a novel CL method for recommender systems called the reaction-diffusion graph contrastive learning model (RDGCL). We design our own GCN for CF based on the equations of diffusion, i.e., low-pass filter, and reaction, i.e., high-pass filter. Our proposed CL-based training occurs between reaction and diffusion-based embeddings, so there is no need for graph augmentations. Experimental evaluation on 5 benchmark datasets demonstrates that our proposed method outperforms state-of-the-art CL-based recommendation models. By enhancing recommendation accuracy and diversity, our method brings an advancement in CL for recommender systems.
- Abstract(参考訳): コントラスト学習(CL)は推薦システムを改善するための有望な手法として登場し、生データからの自己教師付き信号を使用することでデータ空間の課題に対処している。
グラフ畳み込みネットワーク(GCN)に基づく協調フィルタリング(CF)とCLの統合は,レコメンデーションシステムにおいて検討されている。
しかし、現在のCLベースのレコメンデーションモデルは、ローパスフィルタとグラフ拡張に大きく依存している。
本稿では,反応拡散方程式に着想を得て,反応拡散グラフコントラスト学習モデル (RDGCL) と呼ばれるリコメンデータシステムのための新しいCL法を提案する。
我々は、拡散方程式、すなわち低域通過フィルタ、反応方程式、すなわち高域通過フィルタに基づいて、独自のGCN for CFを設計する。
提案したCLベーストレーニングは, 反応と拡散に基づく埋め込みの間に発生するため, グラフ強化は不要である。
5つのベンチマークデータセットの実験的評価により,提案手法は最先端のCLベースレコメンデーションモデルより優れていることが示された。
推薦精度と多様性を高めることにより,提案手法はレコメンダシステムにおけるCLの進歩をもたらす。
関連論文リスト
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - Fusion Self-supervised Learning for Recommendation [16.02820746003461]
本稿では,Fusion Self-supervised Learningフレームワークを提案する。
具体的には、GCNプロセスからの高次情報を用いてコントラストビューを作成します。
各種CL目標からの自己教師付き信号を統合するために,先進CL目標を提案する。
論文 参考訳(メタデータ) (2024-07-29T04:30:38Z) - RecDCL: Dual Contrastive Learning for Recommendation [65.6236784430981]
本稿では、RecDCLという2つのコントラスト学習推薦フレームワークを提案する。
RecDCLでは、FCLの目的は、ユーザとイテムの正のペアに対する冗長なソリューションを排除することである。
BCLの目的は、表現の堅牢性を高めるために出力ベクトルにコントラスト埋め込みを生成するために利用される。
論文 参考訳(メタデータ) (2024-01-28T11:51:09Z) - Unveiling Vulnerabilities of Contrastive Recommender Systems to Poisoning Attacks [48.911832772464145]
コントラスト学習(CL)は近年,レコメンダシステムの領域で注目されている。
本稿では,CLをベースとしたレコメンデータシステムの脆弱性を明らかにする。
論文 参考訳(メタデータ) (2023-11-30T04:25:28Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
本稿では,変分グラフオートエンコーダを用いて学習した表現を組み込む新しいフレームワークとして,変分埋め込み協調フィルタリング(GVECF)を導入する。
提案手法は,テストデータに対するリコールを最大13.78%改善する。
論文 参考訳(メタデータ) (2023-11-20T15:01:33Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
新たな自己監督型推薦フレームワークHypergraph Contrastive Collaborative Filtering (HCCF)を提案する。
HCCFは、ハイパーグラフを拡張したクロスビューコントラスト学習アーキテクチャと、ローカルおよびグローバルなコラボレーティブな関係をキャプチャする。
提案モデルでは,ハイパーグラフ構造と自己教師付き学習を効果的に統合し,レコメンダシステムの表現品質を向上する。
論文 参考訳(メタデータ) (2022-04-26T10:06:04Z) - Supervised Contrastive Learning for Recommendation [6.407166061614783]
本稿では,2部グラフを事前学習し,グラフ畳み込みニューラルネットワークを微調整する,教師付きコントラスト学習フレームワークを提案する。
我々は、この学習方法をSupervised Contrastive Learning (SCL)と呼び、最も先進的なLightGCNに適用する。
論文 参考訳(メタデータ) (2022-01-10T03:11:42Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
コントラスト損失の一般的な選択は、逆確率重み付けによる露光バイアスの低減と等価であることを示す。
我々はCLRecをさらに改良し、マルチCLRecを提案する。
提案手法は,少なくとも4ヶ月のオンラインA/Bテストとオフライン分析が実施され,大幅に改善されている。
論文 参考訳(メタデータ) (2020-05-20T08:15:23Z) - LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation [100.76229017056181]
Graph Convolution Network (GCN)は、協調フィルタリングのための新しい最先端技術となった。
本研究は,GCNの設計を簡略化し,より簡潔かつ適切なレコメンデーションを実現することを目的としている。
我々は,光GCNと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-02-06T06:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。