論文の概要: Graph Contrastive Learning for Optimizing Sparse Data in Recommender Systems with LightGCL
- arxiv url: http://arxiv.org/abs/2506.00048v1
- Date: Wed, 28 May 2025 17:21:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.087997
- Title: Graph Contrastive Learning for Optimizing Sparse Data in Recommender Systems with LightGCL
- Title(参考訳): LightGCLを用いたレコメンダシステムにおけるスパースデータの最適化のためのグラフコントラスト学習
- Authors: Aravinda Jatavallabha, Prabhanjan Bharadwaj, Ashish Chander,
- Abstract要約: LightGCLは、堅牢なグラフ拡張にSingular Value Decomposition(SVD)を使用するグラフコントラスト学習モデルである。
我々の実験は、人気バイアスに対する公正性とレジリエンスの改善も示しており、現実世界のレコメンデータシステムに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are powerful tools for recommendation systems, but they often struggle under data sparsity and noise. To address these issues, we implemented LightGCL, a graph contrastive learning model that uses Singular Value Decomposition (SVD) for robust graph augmentation, preserving semantic integrity without relying on stochastic or heuristic perturbations. LightGCL enables structural refinement and captures global collaborative signals, achieving significant gains over state-of-the-art models across benchmark datasets. Our experiments also demonstrate improved fairness and resilience to popularity bias, making it well-suited for real-world recommender systems.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はレコメンデーションシステムのための強力なツールだが、しばしばデータ空間とノイズの下で苦労する。
これらの問題に対処するため,我々は,Singular Value Decomposition (SVD) を用いたグラフコントラスト学習モデルであるLightGCLを実装した。
LightGCLは構造的洗練とグローバルな協調シグナルのキャプチャを可能にし、ベンチマークデータセット間の最先端モデルよりも大幅に向上する。
我々の実験は、人気バイアスに対する公正性とレジリエンスの改善も示しており、現実世界のレコメンデータシステムに適している。
関連論文リスト
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
グラフニューラルネットワーク(GNN)は、推薦システムのための強力な学習方法である。
近年,コントラスト学習とGNNの統合は,レコメンデータシステムにおいて顕著な性能を示している。
本研究は,LFA-GCLと呼ばれる潜在因子分析(LFA)強化GCLアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-09T03:24:48Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
グラフコントラスト学習のための学習可能なデータ拡張法(LDA-GCL)を提案する。
提案手法は,InfoMin と InfoMax の原則に従うデータ強化学習とグラフコントラスト学習を含む。
本手法は,データ拡張とユーザやアイテムの効果的な表現を学習するために,対向損失関数を最適化する。
論文 参考訳(メタデータ) (2023-02-05T06:55:51Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
自己監督型ハイパーグラフ変換器(SHT)
自己監督型ハイパーグラフ変換器(SHT)
ユーザ-テム相互作用グラフ上のデータ拡張のために,クロスビュー生成型自己教師型学習コンポーネントを提案する。
論文 参考訳(メタデータ) (2022-07-28T18:40:30Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。