RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation
- URL: http://arxiv.org/abs/2312.16563v2
- Date: Thu, 22 Aug 2024 12:50:09 GMT
- Title: RDGCL: Reaction-Diffusion Graph Contrastive Learning for Recommendation
- Authors: Jeongwhan Choi, Hyowon Wi, Chaejeong Lee, Sung-Bae Cho, Dongha Lee, Noseong Park,
- Abstract summary: Contrastive learning (CL) has emerged as a promising technique for improving recommender systems.
We propose a novel CL method for recommender systems called the reaction-diffusion graph contrastive learning model (RDGCL)
Our proposed CL-based training occurs between reaction and diffusion-based embeddings, so there is no need for graph augmentations.
- Score: 36.33499876095934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning (CL) has emerged as a promising technique for improving recommender systems, addressing the challenge of data sparsity by using self-supervised signals from raw data. Integration of CL with graph convolutional network (GCN)-based collaborative filterings (CFs) has been explored in recommender systems. However, current CL-based recommendation models heavily rely on low-pass filters and graph augmentations. In this paper, inspired by the reaction-diffusion equation, we propose a novel CL method for recommender systems called the reaction-diffusion graph contrastive learning model (RDGCL). We design our own GCN for CF based on the equations of diffusion, i.e., low-pass filter, and reaction, i.e., high-pass filter. Our proposed CL-based training occurs between reaction and diffusion-based embeddings, so there is no need for graph augmentations. Experimental evaluation on 5 benchmark datasets demonstrates that our proposed method outperforms state-of-the-art CL-based recommendation models. By enhancing recommendation accuracy and diversity, our method brings an advancement in CL for recommender systems.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - High-Order Fusion Graph Contrastive Learning for Recommendation [16.02820746003461]
Graph contrastive learning (GCL)-based methods typically implement CL by creating contrastive views through various data augmentation techniques.
Existing CL-based methods use traditional CL objectives to capture self-supervised signals.
We propose a High-order Fusion Graph Contrastive Learning (HFGCL) framework for recommendation.
arXiv Detail & Related papers (2024-07-29T04:30:38Z) - RecDCL: Dual Contrastive Learning for Recommendation [65.6236784430981]
We propose a dual contrastive learning recommendation framework -- RecDCL.
In RecDCL, the FCL objective is designed to eliminate redundant solutions on user-item positive pairs.
The BCL objective is utilized to generate contrastive embeddings on output vectors for enhancing the robustness of the representations.
arXiv Detail & Related papers (2024-01-28T11:51:09Z) - Unveiling Vulnerabilities of Contrastive Recommender Systems to Poisoning Attacks [48.911832772464145]
Contrastive learning (CL) has recently gained prominence in the domain of recommender systems.
This paper identifies a vulnerability of CL-based recommender systems that they are more susceptible to poisoning attacks aiming to promote individual items.
arXiv Detail & Related papers (2023-11-30T04:25:28Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - Supervised Contrastive Learning for Recommendation [6.407166061614783]
We propose a supervised contrastive learning framework to pre-train the user-item bipartite graph, and then fine-tune the graph convolutional neural network.
We term this learning method as Supervised Contrastive Learning(SCL) and apply it on the most advanced LightGCN.
arXiv Detail & Related papers (2022-01-10T03:11:42Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
We show that a popular choice of contrastive loss is equivalent to reducing the exposure bias via inverse propensity weighting.
We further improve upon CLRec and propose Multi-CLRec, for accurate multi-intention aware bias reduction.
Our methods have been successfully deployed in Taobao, where at least four-month online A/B tests and offline analyses demonstrate its substantial improvements.
arXiv Detail & Related papers (2020-05-20T08:15:23Z) - LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation [100.76229017056181]
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering.
In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation.
We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation.
arXiv Detail & Related papers (2020-02-06T06:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.