Graph Contrastive Learning for Optimizing Sparse Data in Recommender Systems with LightGCL
- URL: http://arxiv.org/abs/2506.00048v1
- Date: Wed, 28 May 2025 17:21:41 GMT
- Title: Graph Contrastive Learning for Optimizing Sparse Data in Recommender Systems with LightGCL
- Authors: Aravinda Jatavallabha, Prabhanjan Bharadwaj, Ashish Chander,
- Abstract summary: LightGCL is a graph contrastive learning model that uses Singular Value Decomposition (SVD) for robust graph augmentation.<n>Our experiments also demonstrate improved fairness and resilience to popularity bias, making it well-suited for real-world recommender systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are powerful tools for recommendation systems, but they often struggle under data sparsity and noise. To address these issues, we implemented LightGCL, a graph contrastive learning model that uses Singular Value Decomposition (SVD) for robust graph augmentation, preserving semantic integrity without relying on stochastic or heuristic perturbations. LightGCL enables structural refinement and captures global collaborative signals, achieving significant gains over state-of-the-art models across benchmark datasets. Our experiments also demonstrate improved fairness and resilience to popularity bias, making it well-suited for real-world recommender systems.
Related papers
- Model-Driven Graph Contrastive Learning [25.015678499211404]
We propose $textbfMGCL$, a model-driven graph contrastive learning (GCL) framework.<n>GCL has emerged as a powerful self-supervised framework for learning expressive node or graph representations.<n>Experiments on benchmark datasets demonstrate that MGCL achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-06-06T16:17:22Z) - Squeeze and Excitation: A Weighted Graph Contrastive Learning for Collaborative Filtering [1.3535213052193866]
Graph contrastive learning (GCL) aims to enhance the robustness of representation learning.<n>Weighted Graph Contrastive Learning framework (WeightedGCL) addresses the irrational allocation of feature attention.<n>WeightedGCL achieves significant accuracy improvements compared to competitive baselines.
arXiv Detail & Related papers (2025-04-06T11:30:59Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
Graph Neural Networks (GNNs) are powerful learning methods for recommender systems.
Recently, the integration of contrastive learning with GNNs has demonstrated remarkable performance in recommender systems.
This study proposes a latent factor analysis (LFA) enhanced GCL approach, named LFA-GCL.
arXiv Detail & Related papers (2024-08-09T03:24:48Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
We propose Learnable Data Augmentation for Graph Contrastive Learning (LDA-GCL)
Our methods include data augmentation learning and graph contrastive learning, which follow the InfoMin and InfoMax principles, respectively.
In implementation, our methods optimize the adversarial loss function to learn data augmentation and effective representations of users and items.
arXiv Detail & Related papers (2023-02-05T06:55:51Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
Self-Supervised Hypergraph Transformer (SHT)
Self-Supervised Hypergraph Transformer (SHT)
Cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph.
arXiv Detail & Related papers (2022-07-28T18:40:30Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.