論文の概要: Some things are more CRINGE than others: Preference Optimization with
the Pairwise Cringe Loss
- arxiv url: http://arxiv.org/abs/2312.16682v1
- Date: Wed, 27 Dec 2023 18:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 18:29:35.364126
- Title: Some things are more CRINGE than others: Preference Optimization with
the Pairwise Cringe Loss
- Title(参考訳): 他のものよりもクリンジが多いものがある:ペアワイズクリンジ損失による選好最適化
- Authors: Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, Jason Weston
- Abstract要約: 本稿では,既存の2値フィードバック手法であるCrynge Lossをペアの選好設定に一般化する方法について述べる。
AlpacaFarmベンチマークでは,PPOやDPOといった最先端の選好最適化アルゴリズムよりも優れていた。
- 参考スコア(独自算出の注目度): 36.87011044547802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practitioners commonly align large language models using pairwise
preferences, i.e., given labels of the type response A is preferred to response
B for a given input. Perhaps less commonly, methods have also been developed
for binary feedback, i.e. training models given labels of type response A is
good or bad. We show how an existing performant binary feedback method, the
Cringe Loss (Adolphs et al., 2022), can be generalized to the pairwise
preference setting using a simple soft margin extension. Pairwise Cringe Loss
is straightforward to implement and efficient to train, and we find it
outperforms state-of-the-art preference optimization algorithms such as PPO and
DPO on the AlpacaFarm benchmark.
- Abstract(参考訳): 実践者は、ペアの好みを使って大きな言語モデルをアライメントする。つまり、型応答Aのラベルは、与えられた入力に対して応答Bに好まれる。
おそらくより一般的には、バイナリフィードバックのためのメソッドも開発されている。つまり、型応答Aのラベルが良いか悪いかが与えられたトレーニングモデルである。
本稿では,既存の2値フィードバック手法であるCrynge Loss(Adolphs et al., 2022)を,単純なソフトマージン拡張を用いてペアの選好設定に一般化する方法を示す。
Pairwise Cringe Lossは簡単に実装でき、訓練も効率的で、AlpacaFarmベンチマークではPPOやDPOといった最先端の選好最適化アルゴリズムよりも優れています。
関連論文リスト
- VPO: Leveraging the Number of Votes in Preference Optimization [5.200545764106177]
本稿では,ユーザの投票データを活用し,多様な主観的嗜好に適合する手法を提案する。
我々は,議論を呼んでいる世代対と明らかな世代対を区別するために,双方の投票数を組み込んだVoteベースのPreference Optimizationフレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-30T10:39:34Z) - TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees [14.84379332031731]
本稿では、選好木からペア化された選好応答をサンプリングしないツリー選好最適化(TPO)を導入する。
TPOは、言語モデルのアライメントを、優先順位リストランキング問題として定式化し、ポリシーは、ランク付けされた優先順位リストからより効果的に学習することができる。
論文 参考訳(メタデータ) (2024-10-10T22:22:05Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
我々は、NDCGを異なる代理損失で近似することで、エンドツーエンドの選好最適化アルゴリズムを開発する。
OPOは、AlpacaEvalのような評価セットや一般的なベンチマークにおいて、既存のペアワイズおよびリストワイズアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-10-06T03:49:28Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
LLMを人間の嗜好と整合させる多くのアルゴリズムは、人間の嗜好は二進的かつ決定論的であると仮定する。
本研究では,分散ソフトな選好ラベルを導入し,損失関数におけるLLM出力確率の重み付き幾何平均を用いて直接選好最適化(DPO)を改善する。
論文 参考訳(メタデータ) (2024-09-10T17:54:28Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Curriculum Direct Preference Optimization for Diffusion and Consistency Models [110.08057135882356]
テキスト・ツー・イメージ・ジェネレーションのためのカリキュラム学習に基づくDPOの新しい拡張版を提案する。
我々のアプローチであるCurriculum DPOは、3つのベンチマークにおける最先端の微調整手法と比較される。
論文 参考訳(メタデータ) (2024-05-22T13:36:48Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
大きな言語モデル(LLM)を整列させる一般的な手法は、人間の好みを取得することに依存する。
本稿では,命令応答対に対して協調的に好みを抽出する新たな軸を提案する。
また,LLMのアライメントを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - Direct Preference Optimization with an Offset [58.7977683502207]
直接選好最適化(DPO)は、大きな言語モデルと人間の選好を整合させる成功戦略である。
本稿では,DPOをオフセット(ODPO)で一般化し,微調整時にすべての選好ペアを等しく扱わないDPOを提案する。
論文 参考訳(メタデータ) (2024-02-16T10:55:38Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。