論文の概要: Geometric-Averaged Preference Optimization for Soft Preference Labels
- arxiv url: http://arxiv.org/abs/2409.06691v2
- Date: Wed, 30 Oct 2024 05:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 22:05:05.616161
- Title: Geometric-Averaged Preference Optimization for Soft Preference Labels
- Title(参考訳): ソフトな選好ラベルに対する幾何学的平均選好最適化
- Authors: Hiroki Furuta, Kuang-Huei Lee, Shixiang Shane Gu, Yutaka Matsuo, Aleksandra Faust, Heiga Zen, Izzeddin Gur,
- Abstract要約: LLMを人間の嗜好と整合させる多くのアルゴリズムは、人間の嗜好は二進的かつ決定論的であると仮定する。
本研究では,分散ソフトな選好ラベルを導入し,損失関数におけるLLM出力確率の重み付き幾何平均を用いて直接選好最適化(DPO)を改善する。
- 参考スコア(独自算出の注目度): 78.2746007085333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic. However, human preferences can vary across individuals, and therefore should be represented distributionally. In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function. This approach adjusts the scale of learning loss based on the soft labels such that the loss would approach zero when the responses are closer to equally preferred. This simple modification can be easily applied to any DPO-based methods and mitigate over-optimization and objective mismatch, which prior works suffer from. Our experiments simulate the soft preference labels with AI feedback from LLMs and demonstrate that geometric averaging consistently improves performance on standard benchmarks for alignment research. In particular, we observe more preferable responses than binary labels and significant improvements where modestly-confident labels are in the majority.
- Abstract(参考訳): LLMを人間の嗜好と整合させる多くのアルゴリズムは、人間の嗜好は二進的かつ決定論的であると仮定する。
しかし、人間の好みは個人によって異なり、それゆえに分布的に表現されるべきである。
本研究では,分散ソフトな選好ラベルを導入し,損失関数におけるLLM出力確率の重み付き幾何平均を用いて直接選好最適化(DPO)を改善する。
このアプローチは、ソフトラベルに基づいて学習損失のスケールを調整し、応答が等しく好まれるときに損失がゼロに近づくようにする。
この単純な修正は、どんなDPOベースの手法にも容易に適用でき、事前の作業に苦しむ過度な最適化と客観的なミスマッチを軽減することができる。
我々の実験は、LLMからのAIフィードバックでソフトな嗜好ラベルをシミュレートし、幾何平均化がアライメント研究のための標準ベンチマークの性能を一貫して改善することを示した。
特に、バイナリラベルよりもより望ましい応答と、適度に信頼されたラベルが多数を占める大幅な改善を観察する。
関連論文リスト
- Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
我々は、嗜好データ生成と正規化の訓練技術について、より深く検討することで、嗜好最適化パイプラインの改善を目指している。
選好データ生成のために、ペアワイズ比較信号を用いて完了の選好ランキングを導出する反復的なペアワイズランキング機構を提案する。
正規化のトレーニングでは、LLMが好むサンプルの確率をわずかに減少させると、好みの最適化がよりよく収束する傾向が観察される。
論文 参考訳(メタデータ) (2024-11-07T23:03:11Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
選好学習は、好ましくない出力よりも、好ましくない出力により高い確率を割り当てるようにモデルを訓練する、という従来の知恵を考察する。
多くの最先端の選好調整モデルでは、一般的な選好データセットでは60%未満のランキング精度が得られている。
論文 参考訳(メタデータ) (2024-05-29T21:29:44Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization [12.266207199002604]
大規模言語モデル(LLM)は、人間の期待から外れた出力を生成することがある。
経験的選好最適化に暗黙的逆差分回帰を利用する,$i$REPO という新しいフレームワークを提案する。
i$REPOは, ソフトラベル, 自己生成応答, 経験的AIアノテータのロジットを用いて, 効果的に自己アライメントを実現することを示す。
論文 参考訳(メタデータ) (2024-05-24T05:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。