論文の概要: Prompt Expansion for Adaptive Text-to-Image Generation
- arxiv url: http://arxiv.org/abs/2312.16720v1
- Date: Wed, 27 Dec 2023 21:12:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 18:16:05.835385
- Title: Prompt Expansion for Adaptive Text-to-Image Generation
- Title(参考訳): 適応型テキスト・画像生成のためのプロンプト展開
- Authors: Siddhartha Datta, Alexander Ku, Deepak Ramachandran, Peter Anderson
- Abstract要約: 本稿では,より少ない労力で高品質で多様な画像を生成するためのPrompt Expansionフレームワークを提案する。
Prompt Expansionモデルはテキストクエリを入力として取り、拡張されたテキストプロンプトのセットを出力する。
本研究では,Prompt Expansionにより生成された画像が,ベースライン法により生成された画像よりも美的かつ多様であることを示す人体評価研究を行う。
- 参考スコア(独自算出の注目度): 51.67811570987088
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Text-to-image generation models are powerful but difficult to use. Users
craft specific prompts to get better images, though the images can be
repetitive. This paper proposes a Prompt Expansion framework that helps users
generate high-quality, diverse images with less effort. The Prompt Expansion
model takes a text query as input and outputs a set of expanded text prompts
that are optimized such that when passed to a text-to-image model, generates a
wider variety of appealing images. We conduct a human evaluation study that
shows that images generated through Prompt Expansion are more aesthetically
pleasing and diverse than those generated by baseline methods. Overall, this
paper presents a novel and effective approach to improving the text-to-image
generation experience.
- Abstract(参考訳): テキストから画像への生成モデルは強力だが使いにくい。
ユーザーは、より優れた画像を得るための特定のプロンプトを作る。
本稿では,より少ない労力で高品質で多様な画像を生成するためのPrompt Expansionフレームワークを提案する。
プロンプト拡張モデルは、テキストクエリを入力として、テキストから画像へのモデルに渡されると、より多様な魅力的な画像を生成するように最適化された拡張テキストプロンプトのセットを出力する。
本研究では,Prompt Expansionにより生成された画像が,ベースライン法により生成された画像よりも美的かつ多様であることを示す人体評価研究を行う。
全体として,テキスト対画像生成エクスペリエンスを改善するための新しい効果的なアプローチを提案する。
関連論文リスト
- Dynamic Prompt Optimizing for Text-to-Image Generation [63.775458908172176]
テキストから画像への生成モデルを改善するために,textbfPrompt textbfAuto-textbfEditing (PAE)法を導入する。
我々は、各単語の重みと射出時間ステップを探索するために、オンライン強化学習戦略を採用し、動的微調整プロンプトを導いた。
論文 参考訳(メタデータ) (2024-04-05T13:44:39Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
本稿では,拡散モデルの適切なテキスト記述を即時学習により学習するフレームワークを提案する。
提案手法は,入力されたテキストと生成された画像とのマッチングを改善するためのプロンプトを効果的に学習することができる。
論文 参考訳(メタデータ) (2024-01-12T03:46:29Z) - NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation [4.21512101973222]
NeuroPromptsは、テキスト・ツー・イメージモデルによって生成される世代の品質を改善するためのユーザのプロンプトを強化する適応的なフレームワークである。
我々のフレームワークは,人間のプロンプトエンジニアが生成したようなプロンプトを生成するために,事前訓練された言語モデルを用いて制約付きテキストデコードを利用する。
論文 参考訳(メタデータ) (2023-11-20T22:57:47Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - PromptMagician: Interactive Prompt Engineering for Text-to-Image
Creation [16.41459454076984]
本研究では,画像の検索結果を探索し,入力プロンプトを洗練させる視覚解析システムであるPromptMagicianを提案する。
システムのバックボーンは、ユーザのプロンプトを入力として取り、DiffusionDBから同様のプロンプトイメージペアを取得し、特別な(重要かつ関連性の高い)プロンプトキーワードを識別するプロンプトレコメンデーションモデルである。
論文 参考訳(メタデータ) (2023-07-18T07:46:25Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - Promptify: Text-to-Image Generation through Interactive Prompt
Exploration with Large Language Models [29.057923932305123]
本稿では,テキスト・ツー・イメージ生成モデルの迅速な探索と改良を支援する対話型システムであるPromptifyを提案する。
本稿では,Promptifyがテキスト・ツー・イメージ・ワークフローを効果的に促進し,テキスト・ツー・イメージ生成に広く使用されている既存のベースライン・ツールより優れていることを示す。
論文 参考訳(メタデータ) (2023-04-18T22:59:11Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
本稿では, 特定対象を含む画像と共同テキストを入力シーケンスとして用いた, Unified Multi-Modal Latent Diffusion (UMM-Diffusion) を提案する。
より具体的には、入力テキストと画像の両方を1つの統一マルチモーダル潜在空間に符号化する。
入力テキストと画像の両面から複雑な意味を持つ高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-03-16T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。