DarkShot: Lighting Dark Images with Low-Compute and High-Quality
- URL: http://arxiv.org/abs/2312.16805v3
- Date: Wed, 10 Jan 2024 02:51:27 GMT
- Title: DarkShot: Lighting Dark Images with Low-Compute and High-Quality
- Authors: Jiazhang Zheng, Lei Li, Qiuping Liao, Cheng Li, Li Li, Yangxing Liu
- Abstract summary: This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks.
Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.
- Score: 11.256790804961563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nighttime photography encounters escalating challenges in extremely low-light
conditions, primarily attributable to the ultra-low signal-to-noise ratio. For
real-world deployment, a practical solution must not only produce visually
appealing results but also require minimal computation. However, most existing
methods are either focused on improving restoration performance or employ
lightweight models at the cost of quality. This paper proposes a lightweight
network that outperforms existing state-of-the-art (SOTA) methods in low-light
enhancement tasks while minimizing computation. The proposed network
incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention
(SCA) modules, which enhance the model's capacity to aggregate global
information and are well-suited for high-resolution images. Additionally, based
on our analysis of the low-light image restoration process, we propose a
Two-Stage Framework that achieves superior results. Our model can restore a UHD
4K resolution image with minimal computation while keeping SOTA restoration
quality.
Related papers
- DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
arXiv Detail & Related papers (2024-05-21T16:01:13Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - CDAN: Convolutional dense attention-guided network for low-light image enhancement [2.2530496464901106]
Low-light images pose challenges of diminished clarity, muted colors, and reduced details.
This paper introduces the Convolutional Dense Attention-guided Network (CDAN), a novel solution for enhancing low-light images.
CDAN integrates an autoencoder-based architecture with convolutional and dense blocks, complemented by an attention mechanism and skip connections.
arXiv Detail & Related papers (2023-08-24T16:22:05Z) - SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by
Spatial Consistency [22.54951703413469]
We present a novel low-light image enhancement model, termed Spatial Consistency Retinex Network (SCRNet)
Our proposed model incorporates three levels of consistency: channel level, semantic level, and texture level, inspired by the principle of spatial consistency.
Extensive evaluations on various low-light image datasets demonstrate that our proposed SCRNet outshines existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T03:32:19Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition [78.50328335703914]
Diffusion in the Dark (DiD) is a diffusion model for low-light image reconstruction for text recognition.
We demonstrate that DiD, without any task-specific optimization, can outperform SOTA low-light methods in low-light text recognition on real images.
arXiv Detail & Related papers (2023-03-07T23:52:51Z) - INFWIDE: Image and Feature Space Wiener Deconvolution Network for
Non-blind Image Deblurring in Low-Light Conditions [32.35378513394865]
We propose a novel non-blind deblurring method dubbed image and feature space Wiener deconvolution network (INFWIDE)
INFWIDE removes noise and hallucinates saturated regions in the image space and suppresses ringing artifacts in the feature space.
Experiments on synthetic data and real data demonstrate the superior performance of the proposed approach.
arXiv Detail & Related papers (2022-07-17T15:22:31Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Improving Aerial Instance Segmentation in the Dark with Self-Supervised
Low Light Enhancement [6.500738558466833]
Low light conditions in aerial images adversely affect the performance of vision based applications.
We propose a new method that is capable of enhancing the low light image in a self-supervised fashion.
We also propose the generation of a new low light aerial dataset using GANs.
arXiv Detail & Related papers (2021-02-10T12:24:40Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.