論文の概要: InsActor: Instruction-driven Physics-based Characters
- arxiv url: http://arxiv.org/abs/2312.17135v1
- Date: Thu, 28 Dec 2023 17:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 15:39:07.098774
- Title: InsActor: Instruction-driven Physics-based Characters
- Title(参考訳): InsActor: 命令駆動型物理ベースキャラクタ
- Authors: Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Xiao Ma, Liang Pan, Ziwei Liu
- Abstract要約: 本稿では,物理系文字の命令駆動型アニメーションを生成する,原理的生成フレームワークを提案する。
我々のフレームワークは、InsActorに高レベルな人間の指示とキャラクターの動きの間の複雑な関係をキャプチャする権限を与える。
InsActorは、命令駆動のモーション生成や命令駆動のウェイポイント誘導など、様々なタスクで最先端の結果を達成する。
- 参考スコア(独自算出の注目度): 65.4702927454252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating animation of physics-based characters with intuitive control has
long been a desirable task with numerous applications. However, generating
physically simulated animations that reflect high-level human instructions
remains a difficult problem due to the complexity of physical environments and
the richness of human language. In this paper, we present InsActor, a
principled generative framework that leverages recent advancements in
diffusion-based human motion models to produce instruction-driven animations of
physics-based characters. Our framework empowers InsActor to capture complex
relationships between high-level human instructions and character motions by
employing diffusion policies for flexibly conditioned motion planning. To
overcome invalid states and infeasible state transitions in planned motions,
InsActor discovers low-level skills and maps plans to latent skill sequences in
a compact latent space. Extensive experiments demonstrate that InsActor
achieves state-of-the-art results on various tasks, including
instruction-driven motion generation and instruction-driven waypoint heading.
Notably, the ability of InsActor to generate physically simulated animations
using high-level human instructions makes it a valuable tool, particularly in
executing long-horizon tasks with a rich set of instructions.
- Abstract(参考訳): 直感的な制御による物理系文字のアニメーション生成は多くの応用において望ましい課題であった。
しかし、高レベルの人間の指示を反映した物理シミュレーションアニメーションを生成することは、物理的環境の複雑さと人間の言語豊かさのために難しい問題である。
本稿では,拡散型人体運動モデルの最近の進歩を利用して物理系文字の命令駆動アニメーションを生成する,原理的生成フレームワークInsActorを提案する。
提案手法は, 柔軟に条件づけされた動作計画のための拡散ポリシーを用いて, 高レベルヒューマンインストラクションとキャラクタモーションの複雑な関係を捉えることをインサクタに与える。
計画された動作における無効な状態と不可能な状態遷移を克服するために、InsActorは低レベルのスキルを発見し、コンパクトな潜在空間における潜在スキルシーケンスにマップする計画を立てる。
広範囲な実験により、InsActorは命令駆動のモーション生成や命令駆動のウェイポイント誘導など、様々なタスクで最先端の結果が得られた。
特に、ハイレベルなヒューマンインストラクションを使って物理的にシミュレートされたアニメーションを生成するinsactorの能力は、特に豊富なインストラクションセットでロングホライゾンタスクを実行する際に有用なツールである。
関連論文リスト
- Human-Object Interaction from Human-Level Instructions [16.70362477046958]
対象動作,全体動作,指動作を人体レベルで同時に合成できる最初の完全システムを提案する。
実験では,高レベルプランナが多目的物体の現実的相互作用を合成する上で,高レベルな目標レイアウトの生成に有効であることを実証した。
論文 参考訳(メタデータ) (2024-06-25T17:46:28Z) - HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotionは、異なるシナリオのタスクに基づいて行動を学び、選択し、計画するフレームワークである。
強化学習と全身最適化を組み合わせることで,38関節の運動を生成する。
シミュレーションと実世界の実験では、学習した動きが新しいタスクに効率的に適応できることが示されている。
論文 参考訳(メタデータ) (2024-06-20T18:21:24Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Motion In-Betweening with Phase Manifolds [29.673541655825332]
本稿では,周期的オートエンコーダによって学習された位相変数を利用して,文字のターゲットポーズに到達するための,新たなデータ駆動型動作制御システムを提案する。
提案手法では,経験的ニューラルネットワークモデルを用いて,空間と時間の両方のクラスタの動きを,異なる専門家の重みで解析する。
論文 参考訳(メタデータ) (2023-08-24T12:56:39Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically
Simulated Characters [123.88692739360457]
汎用運動技術により、人間は複雑な作業を行うことができる。
これらのスキルは、新しいタスクを学ぶときの振る舞いを導くための強力な先駆者も提供します。
物理シミュレーション文字のための汎用的で再利用可能なスキル埋め込みを学習するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-04T06:13:28Z) - Learning Riemannian Manifolds for Geodesic Motion Skills [19.305285090233063]
ロボットが新しいスキルを習得し、目に見えない状況に適応するための学習フレームワークを開発する。
本研究では,測地運動技術を用いて,データ多様体上の任意の地点をロボットがどう移動させるかを示す。
ロボットは、精巧な動きパターンを特徴とする現実的なスキルを十分に学習し、再現する7-DoFロボットマニピュレータを用いて、学習フレームワークをテストする。
論文 参考訳(メタデータ) (2021-06-08T13:24:54Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
我々は,与えられたシナリオで追跡するキャラクタの動作を選択するための完全自動化手法を提案する。
キャラクタが実行するべきハイレベルなタスク目標は、比較的単純な報酬関数によって指定できる。
キャラクタの動作の低レベルスタイルは、非構造化モーションクリップのデータセットによって指定できる。
本システムでは,最先端のトラッキング技術に匹敵する高品質な動作を生成する。
論文 参考訳(メタデータ) (2021-04-05T22:43:14Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
大規模動作データセットから学習することで,異なるスタイルで数千の動作を習得する物理ベースのユニバーサルニューラルコントローラ(UniCon)を提案する。
UniConは、キーボード駆動制御をサポートし、ロコモーションとアクロバティックスキルの大きなプールから引き出されたモーションシーケンスを作成し、ビデオで撮影した人を物理ベースの仮想アバターにテレポートする。
論文 参考訳(メタデータ) (2020-11-30T18:51:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。