論文の概要: Motion In-Betweening with Phase Manifolds
- arxiv url: http://arxiv.org/abs/2308.12751v1
- Date: Thu, 24 Aug 2023 12:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 14:06:06.982728
- Title: Motion In-Betweening with Phase Manifolds
- Title(参考訳): 位相マニフォールドを用いた動作間移動
- Authors: Paul Starke, Sebastian Starke, Taku Komura, Frank Steinicke
- Abstract要約: 本稿では,周期的オートエンコーダによって学習された位相変数を利用して,文字のターゲットポーズに到達するための,新たなデータ駆動型動作制御システムを提案する。
提案手法では,経験的ニューラルネットワークモデルを用いて,空間と時間の両方のクラスタの動きを,異なる専門家の重みで解析する。
- 参考スコア(独自算出の注目度): 29.673541655825332
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel data-driven motion in-betweening system to
reach target poses of characters by making use of phases variables learned by a
Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network
model, in which the phases cluster movements in both space and time with
different expert weights. Each generated set of weights then produces a
sequence of poses in an autoregressive manner between the current and target
state of the character. In addition, to satisfy poses which are manually
modified by the animators or where certain end effectors serve as constraints
to be reached by the animation, a learned bi-directional control scheme is
implemented to satisfy such constraints. The results demonstrate that using
phases for motion in-betweening tasks sharpen the interpolated movements, and
furthermore stabilizes the learning process. Moreover, using phases for motion
in-betweening tasks can also synthesize more challenging movements beyond
locomotion behaviors. Additionally, style control is enabled between given
target keyframes. Our proposed framework can compete with popular
state-of-the-art methods for motion in-betweening in terms of motion quality
and generalization, especially in the existence of long transition durations.
Our framework contributes to faster prototyping workflows for creating animated
character sequences, which is of enormous interest for the game and film
industry.
- Abstract(参考訳): 本稿では,周期的オートエンコーダによって学習される位相変数を用いて,文字のターゲットポーズに到達可能な新しいデータ駆動動作インインターインターホンシステムを提案する。
提案手法では,経験的ニューラルネットワークモデルを用いて,空間と時間の両方におけるクラスタの移動を,異なる専門家の重みで行う。
生成された各重みのセットは、キャラクタの現在の状態とターゲット状態の間の自己回帰的なポーズのシーケンスを生成する。
また、アニメーターが手動で修正したポーズや、アニメーションが到達する制約となるエンドエフェクタを満足させるため、このような制約を満たすために学習された双方向制御スキームが実装される。
その結果,タスク間の動作に位相を用いると補間動作が鋭くなり,さらに学習プロセスが安定化することが示された。
さらに、動作中の動作にフェーズを使用することで、移動行動を超えたより困難な動作を合成することもできる。
さらに、所定のターゲットキーフレーム間でスタイル制御が可能である。
提案手法は, 動きの質や一般化, 特に長い遷移時間の存在において, 最新の動きの手法と競合することができる。
本フレームワークは,ゲームや映画産業にとって大きな関心事であるアニメーションキャラクタシーケンスを作成するための高速なプロトタイピングワークフローに寄与する。
関連論文リスト
- KinMo: Kinematic-aware Human Motion Understanding and Generation [6.962697597686156]
テキストに基づく人間の動きの制御は、コンピュータビジョンにおいて重要な課題である。
伝統的なアプローチは、しばしば運動合成のための全体論的な行動記述に依存している。
動作を別個の体節群運動に分解する動き表現を提案する。
論文 参考訳(メタデータ) (2024-11-23T06:50:11Z) - Real-time Diverse Motion In-betweening with Space-time Control [4.910937238451485]
本研究では,キネマティックキャラクタのための多種多様な相互動作を生成するためのデータ駆動型フレームワークを提案する。
本手法は,移動動作と非構造動作の両方を合成し,リッチで汎用的で高品質なアニメーション生成を可能にする。
論文 参考訳(メタデータ) (2024-09-30T22:45:53Z) - Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
『無限運動』は、長文を長文から拡張運動生成に活用する新しいアプローチである。
我々のモデルの主な革新は、任意の長さのテキストを入力として受け入れることである。
テキストのタイムスタンプ設計を取り入れ、生成されたシーケンス内のローカルセグメントの正確な編集を可能にする。
論文 参考訳(メタデータ) (2024-07-11T12:33:56Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
そこで本研究では,テキスト記述から高品質な人間の動作系列を生成する学習手法を提案する。
既存の技術は、任意の長さの動き列を生成する際に、動きの多様性と滑らかな遷移に苦しむ。
動作空間をコンパクトで表現力のあるパラメータ化位相空間に変換するネットワークエンコーダを開発する。
論文 参考訳(メタデータ) (2023-12-07T04:39:22Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
動作駆動型人間の動作予測の課題について紹介する。
一連の動作ラベルと短い動作履歴から、複数の可算な将来の動作を予測することを目的としている。
論文 参考訳(メタデータ) (2022-05-31T08:38:07Z) - Real-time Controllable Motion Transition for Characters [14.88407656218885]
リアルタイムの動作生成はゲームでは普遍的に必要であり、既存のアニメーションパイプラインでは非常に望ましい。
我々のアプローチは、運動多様体と条件遷移という2つの重要な構成要素から構成される。
提案手法は,複数の測定基準の下で測定された高品質な動きを生成できることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:02:54Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
我々は,与えられたシナリオで追跡するキャラクタの動作を選択するための完全自動化手法を提案する。
キャラクタが実行するべきハイレベルなタスク目標は、比較的単純な報酬関数によって指定できる。
キャラクタの動作の低レベルスタイルは、非構造化モーションクリップのデータセットによって指定できる。
本システムでは,最先端のトラッキング技術に匹敵する高品質な動作を生成する。
論文 参考訳(メタデータ) (2021-04-05T22:43:14Z) - Robust Motion In-betweening [17.473287573543065]
本稿では,3次元アニメーターのための新しいツールとして機能する,新しい頑健な遷移生成技術を提案する。
このシステムは、時間的にスパーサをアニメーションの制約として使用する高品質な動作を合成する。
私たちは、トレーニングされたモデルを使用して運用シナリオで相互運用を行う、カスタムのMotionBuilderプラグインを紹介します。
論文 参考訳(メタデータ) (2021-02-09T16:52:45Z) - Generative Tweening: Long-term Inbetweening of 3D Human Motions [40.16462039509098]
本稿では,ヒトの動作の長期的包摂を行う,生体力学的に制約された生成的敵ネットワークを提案する。
我々は79種類のキャプチャー・モーション・データをトレーニングし、ネットワークは様々な複雑なモーション・スタイルで頑健に動作した。
論文 参考訳(メタデータ) (2020-05-18T17:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。