Transformer-Based Multi-Object Smoothing with Decoupled Data Association
and Smoothing
- URL: http://arxiv.org/abs/2312.17261v1
- Date: Fri, 22 Dec 2023 20:24:39 GMT
- Title: Transformer-Based Multi-Object Smoothing with Decoupled Data Association
and Smoothing
- Authors: Juliano Pinto, Georg Hess, Yuxuan Xia, Henk Wymeersch, Lennart
Svensson
- Abstract summary: Multi-object tracking (MOT) is the task of estimating the state trajectories of an unknown and time-varying number of objects over a certain time window.
Deep learning based algorithms are a possible venue for tackling this issue but have not been applied extensively in settings where accurate multi-object models are available.
We propose a novel DL architecture specifically tailored for this setting that decouples the data association task from the smoothing task.
- Score: 20.99082981430798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-object tracking (MOT) is the task of estimating the state trajectories
of an unknown and time-varying number of objects over a certain time window.
Several algorithms have been proposed to tackle the multi-object smoothing
task, where object detections can be conditioned on all the measurements in the
time window. However, the best-performing methods suffer from intractable
computational complexity and require approximations, performing suboptimally in
complex settings. Deep learning based algorithms are a possible venue for
tackling this issue but have not been applied extensively in settings where
accurate multi-object models are available and measurements are
low-dimensional. We propose a novel DL architecture specifically tailored for
this setting that decouples the data association task from the smoothing task.
We compare the performance of the proposed smoother to the state-of-the-art in
different tasks of varying difficulty and provide, to the best of our
knowledge, the first comparison between traditional Bayesian trackers and DL
trackers in the smoothing problem setting.
Related papers
- Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
arXiv Detail & Related papers (2023-08-23T16:42:27Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
In deep active learning, it is important to choose multiple examples to markup at each step.
Existing solutions to this problem, such as BatchBALD, have significant limitations in selecting a large number of examples.
We present the Large BatchBALD algorithm, which aims to achieve comparable quality while being more computationally efficient.
arXiv Detail & Related papers (2023-01-13T11:45:17Z) - Transformer-based assignment decision network for multiple object
tracking [0.0]
We introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of explicit optimization during inference.
Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker.
arXiv Detail & Related papers (2022-08-06T19:47:32Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Can Deep Learning be Applied to Model-Based Multi-Object Tracking? [25.464269324261636]
Multi-object tracking (MOT) is the problem of tracking the state of an unknown and time-varying number of objects using noisy measurements.
Deep learning (DL) has been increasingly used in MOT for improving tracking performance.
In this paper, we propose a Transformer-based DL tracker and evaluate its performance in the model-based setting.
arXiv Detail & Related papers (2022-02-16T07:43:08Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
We introduce the DeTAVIZ interface, which is a web browser based visualization tool for quick exploration and assessment of feasibility of DL based anomaly detection in a given problem.
DeTAVIZ allows the user to easily and quickly iterate through multiple post processing options and compare different models, and allows for manual optimisation towards a chosen metric.
arXiv Detail & Related papers (2021-09-21T10:38:26Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - Bayesian nonparametric modeling for predicting dynamic dependencies in
multiple object tracking [1.8275108630751837]
In this paper, we employ Bayesian nonparametric methods to address challenges in tracking multiple objects.
We propose modeling the multiple object parameter state prior using the dependent Dirichlet and Pitman-Yor processes.
These nonparametric models have been shown to be more flexible and robust, when compared to existing methods.
arXiv Detail & Related papers (2020-04-22T19:07:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.