Can you See me? On the Visibility of NOPs against Android Malware Detectors
- URL: http://arxiv.org/abs/2312.17356v1
- Date: Thu, 28 Dec 2023 20:48:16 GMT
- Title: Can you See me? On the Visibility of NOPs against Android Malware Detectors
- Authors: Diego Soi, Davide Maiorca, Giorgio Giacinto, Harel Berger,
- Abstract summary: This paper proposes a visibility metric that assesses the difficulty in spotting NOPs and similar non-operational codes.
We tested our metric on a state-of-the-art, opcode-based deep learning system for Android malware detection.
- Score: 1.2187048691454239
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Android malware still represents the most significant threat to mobile systems. While Machine Learning systems are increasingly used to identify these threats, past studies have revealed that attackers can bypass these detection mechanisms by making subtle changes to Android applications, such as adding specific API calls. These modifications are often referred to as No OPerations (NOP), which ideally should not alter the semantics of the program. However, many NOPs can be spotted and eliminated by refining the app analysis process. This paper proposes a visibility metric that assesses the difficulty in spotting NOPs and similar non-operational codes. We tested our metric on a state-of-the-art, opcode-based deep learning system for Android malware detection. We implemented attacks on the feature and problem spaces and calculated their visibility according to our metric. The attained results show an intriguing trade-off between evasion efficacy and detectability: our metric can be valuable to ensure the real effectiveness of an adversarial attack, also serving as a useful aid to develop better defenses.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Unraveling the Key of Machine Learning Solutions for Android Malware
Detection [33.63795751798441]
This paper presents a comprehensive investigation into machine learning-based Android malware detection.
We first survey the literature, categorizing contributions into a taxonomy based on the Android feature engineering and ML modeling pipeline.
Then, we design a general-propose framework for ML-based Android malware detection, re-implement 12 representative approaches from different research communities, and evaluate them from three primary dimensions, i.e. effectiveness, robustness, and efficiency.
arXiv Detail & Related papers (2024-02-05T12:31:19Z) - MalPurifier: Enhancing Android Malware Detection with Adversarial
Purification against Evasion Attacks [19.68134775248897]
MalPurifier exploits adversarial purification to eliminate perturbations independently, resulting in attack mitigation in a light and flexible way.
Experimental results on two Android malware datasets demonstrate that MalPurifier outperforms the state-of-the-art defenses.
arXiv Detail & Related papers (2023-12-11T14:48:43Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroid is a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios.
We show that EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries.
arXiv Detail & Related papers (2021-10-07T09:39:40Z) - Identification of Significant Permissions for Efficient Android Malware
Detection [2.179313476241343]
One out of every five business/industry mobile application leaks sensitive personal data.
Traditional signature/heuristic-based malware detection systems are unable to cope up with current malware challenges.
We propose an efficient Android malware detection system using machine learning and deep neural network.
arXiv Detail & Related papers (2021-02-28T22:07:08Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.