A Fully Automated Pipeline Using Swin Transformers for Deep
Learning-Based Blood Segmentation on Head CT Scans After Aneurysmal
Subarachnoid Hemorrhage
- URL: http://arxiv.org/abs/2312.17553v1
- Date: Fri, 29 Dec 2023 10:57:51 GMT
- Title: A Fully Automated Pipeline Using Swin Transformers for Deep
Learning-Based Blood Segmentation on Head CT Scans After Aneurysmal
Subarachnoid Hemorrhage
- Authors: Sergio Garcia Garcia, Santiago Cepeda, Ignacio Arrese, Rosario Sarabia
- Abstract summary: We develop and validate an artificial intelligence-driven, fully automated blood segmentation tool for spontaneous subarachnoid hemorrhage (SAH) patients.
We retrospectively analyzed NCCT scans from patients with confirmed aneurysmal subarachnoid hemorrhage (aSAH) utilizing the Swin UNETR for segmentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Accurate volumetric assessment of spontaneous subarachnoid
hemorrhage (SAH) is a labor-intensive task performed with current manual and
semiautomatic methods that might be relevant for its clinical and prognostic
implications. In the present research, we sought to develop and validate an
artificial intelligence-driven, fully automated blood segmentation tool for SAH
patients via noncontrast computed tomography (NCCT) scans employing a
transformer-based Swin UNETR architecture. Methods: We retrospectively analyzed
NCCT scans from patients with confirmed aneurysmal subarachnoid hemorrhage
(aSAH) utilizing the Swin UNETR for segmentation. The performance of the
proposed method was evaluated against manually segmented ground truth data
using metrics such as Dice score, intersection over union (IoU), the volumetric
similarity index (VSI), the symmetric average surface distance (SASD), and
sensitivity and specificity. A validation cohort from an external institution
was included to test the generalizability of the model. Results: The model
demonstrated high accuracy with robust performance metrics across the internal
and external validation cohorts. Notably, it achieved high Dice coefficient
(0.873), IoU (0.810), VSI (0.840), sensitivity (0.821) and specificity (0.996)
values and a low SASD (1.866), suggesting proficiency in segmenting blood in
SAH patients. The model's efficiency was reflected in its processing speed,
indicating potential for real-time applications. Conclusions: Our Swin
UNETR-based model offers significant advances in the automated segmentation of
blood after aSAH on NCCT images. Despite the computational intensity, the model
operates effectively on standard hardware with a user-friendly interface,
facilitating broader clinical adoption. Further validation across diverse
datasets is warranted to confirm its clinical reliability.
Related papers
- The Potential of Wearable Sensors for Assessing Patient Acuity in
Intensive Care Unit (ICU) [12.359907390320453]
Acuity assessments are vital in critical care settings to provide timely interventions and fair resource allocation.
Traditional acuity scores do not incorporate granular information such as patients' mobility level, which can indicate recovery or deterioration in the ICU.
In this study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for developing an AI-driven acuity assessment score.
arXiv Detail & Related papers (2023-11-03T21:52:05Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Application of the nnU-Net for automatic segmentation of lung lesion on
CT images, and implication on radiomic models [1.8231394717039833]
A deep-learning automatic segmentation method was applied on computed tomography images of non-small-cell lung cancer patients.
The use of manual vs automatic segmentation in the performance of survival radiomic models was assessed, as well.
arXiv Detail & Related papers (2022-09-24T15:04:23Z) - Translating automated brain tumour phenotyping to clinical neuroimaging [0.4199844472131921]
We use state-of-the-art methods to quantify the comparative fidelity of automated tumour segmentation models.
Deep learning segmentation models characterize tumours well when missing data and can even detect enhancing tissue without the use of contrast.
arXiv Detail & Related papers (2022-06-13T12:58:54Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Intra-Domain Task-Adaptive Transfer Learning to Determine Acute Ischemic
Stroke Onset Time [7.024121839235693]
Treatment of acute ischemic strokes (AIS) is largely contingent upon the time since stroke onset (TSS)
Current clinical guidelines for patients with unknown TSS recommend the use of MRI to determine eligibility for thrombolysis, but radiology assessments have high inter-reader variability.
We present deep learning models that leverage MRI diffusion series to classify TSS based on clinically validated thresholds.
arXiv Detail & Related papers (2020-11-05T18:28:54Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.