Examining Deployment and Refinement of the VIOLA-AI Intracranial Hemorrhage Model Using an Interactive NeoMedSys Platform
- URL: http://arxiv.org/abs/2505.09380v1
- Date: Wed, 14 May 2025 13:33:38 GMT
- Title: Examining Deployment and Refinement of the VIOLA-AI Intracranial Hemorrhage Model Using an Interactive NeoMedSys Platform
- Authors: Qinghui Liu, Jon Nesvold, Hanna Raaum, Elakkyen Murugesu, Martin Røvang, Bradley J Maclntosh, Atle Bjørnerud, Karoline Skogen,
- Abstract summary: The current study describes a radiology software platform called NeoMedSys that can enable efficient deployment and refinements of AI models.<n>We evaluated the feasibility and effectiveness of running NeoMedSys for three months in real-world clinical settings.
- Score: 0.6582858408923039
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Background: There are many challenges and opportunities in the clinical deployment of AI tools in radiology. The current study describes a radiology software platform called NeoMedSys that can enable efficient deployment and refinements of AI models. We evaluated the feasibility and effectiveness of running NeoMedSys for three months in real-world clinical settings and focused on improvement performance of an in-house developed AI model (VIOLA-AI) designed for intracranial hemorrhage (ICH) detection. Methods: NeoMedSys integrates tools for deploying, testing, and optimizing AI models with a web-based medical image viewer, annotation system, and hospital-wide radiology information systems. A pragmatic investigation was deployed using clinical cases of patients presenting to the largest Emergency Department in Norway (site-1) with suspected traumatic brain injury (TBI) or patients with suspected stroke (site-2). We assessed ICH classification performance as VIOLA-AI encountered new data and underwent pre-planned model retraining. Performance metrics included sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). Results: NeoMedSys facilitated iterative improvements in the AI model, significantly enhancing its diagnostic accuracy. Automated bleed detection and segmentation were reviewed in near real-time to facilitate re-training VIOLA-AI. The iterative refinement process yielded a marked improvement in classification sensitivity, rising to 90.3% (from 79.2%), and specificity that reached 89.3% (from 80.7%). The bleed detection ROC analysis for the entire sample demonstrated a high area-under-the-curve (AUC) of 0.949 (from 0.873). Model refinement stages were associated with notable gains, highlighting the value of real-time radiologist feedback.
Related papers
- SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
We develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery.<n>We compare traditional ML models with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention.<n>Performance was evaluated using the coefficient of determination (R2) and key predictors were identified using explainable AI.
arXiv Detail & Related papers (2025-07-15T01:18:28Z) - Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Towards Integrating Epistemic Uncertainty Estimation into the Radiotherapy Workflow [40.07325268305058]
The precision of contouring target structures and organs-at-risk (OAR) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety.
Recent advancements in deep learning (DL) have significantly improved OAR contouring performance.
However, the reliability of these models, especially in the presence of out-of-distribution (OOD) scenarios, remains a concern in clinical settings.
arXiv Detail & Related papers (2024-09-27T10:55:58Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - A Fully Automated Pipeline Using Swin Transformers for Deep
Learning-Based Blood Segmentation on Head CT Scans After Aneurysmal
Subarachnoid Hemorrhage [0.0]
We develop and validate an artificial intelligence-driven, fully automated blood segmentation tool for spontaneous subarachnoid hemorrhage (SAH) patients.
We retrospectively analyzed NCCT scans from patients with confirmed aneurysmal subarachnoid hemorrhage (aSAH) utilizing the Swin UNETR for segmentation.
arXiv Detail & Related papers (2023-12-29T10:57:51Z) - The Limits of Fair Medical Imaging AI In The Wild [43.97266228706059]
We investigate the extent to which medical AI utilizes demographic encodings.
We confirm that medical imaging AI leverages demographic shortcuts in disease classification.
We find that models with less encoding of demographic attributes are often most "globally optimal"
arXiv Detail & Related papers (2023-12-11T18:59:50Z) - Deep learning in computed tomography pulmonary angiography imaging: a
dual-pronged approach for pulmonary embolism detection [0.0]
The aim of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of Pulmonary Embolism (PE)
Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism.
AG-CNN achieves robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture.
arXiv Detail & Related papers (2023-11-09T08:23:44Z) - Virtual imaging trials improved the transparency and reliability of AI systems in COVID-19 imaging [1.6040478776985583]
This study focuses on using convolutional neural networks (CNNs) for COVID-19 diagnosis using computed tomography (CT) and chest radiography (CXR)
We developed and tested multiple AI models, 3D ResNet-like and 2D EfficientNetv2 architectures, across diverse datasets.
Models trained on the most diverse datasets showed the highest external testing performance, with AUC values ranging from 0.73 to 0.76 for CT and 0.70 to 0.73 for CXR.
arXiv Detail & Related papers (2023-08-17T19:12:32Z) - Deep Learning (DL)-based Automatic Segmentation of the Internal Pudendal
Artery (IPA) for Reduction of Erectile Dysfunction in Definitive Radiotherapy
of Localized Prostate Cancer [2.3547204612718393]
We propose a deep learning (DL)-based auto-segmentation model for the internal-pudendal-arteries (IPA)
The model uses CT and MRI or CT alone as the input image modality to accommodate variation in clinical practice.
The proposed model achieved good quality IPA contours to improve uniformity of segmentation.
arXiv Detail & Related papers (2023-02-03T02:00:06Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.