論文の概要: Generative Inverse Design of Metamaterials with Functional Responses by Interpretable Learning
- arxiv url: http://arxiv.org/abs/2401.00003v2
- Date: Thu, 11 Jul 2024 17:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:27:37.533413
- Title: Generative Inverse Design of Metamaterials with Functional Responses by Interpretable Learning
- Title(参考訳): 解釈型学習による機能的応答をもつメタマテリアルの逆設計
- Authors: Wei "Wayne" Chen, Rachel Sun, Doksoo Lee, Carlos M. Portela, Wei Chen,
- Abstract要約: 本稿では, オンデマンド機能的振る舞いを持つメタマテリアル設計の高速な生成を実現するために, ランダムフォレストに基づく解釈可能生成逆設計(RIGID)手法を提案する。
トレーニングされたフォワードモデルから得られた目標満足度の可能性に基づいて、マルコフ連鎖モンテカルロ法を用いて設計ソリューションをサンプリングすることができる。
- 参考スコア(独自算出の注目度): 3.931881794708454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metamaterials with functional responses, such as wave-based responses or deformation-induced property variation under external stimuli, can exhibit varying properties or functionalities under different conditions. Herein, we aim at rapid inverse design of these metamaterials to meet target qualitative functional behaviors. This inverse problem is challenging due to its intractability and the existence of non-unique solutions. Past works mainly focus on deep-learning-based methods that are data-demanding, require time-consuming training and hyperparameter tuning, and are non-interpretable. To overcome these limitations, we propose the Random-forest-based Interpretable Generative Inverse Design (RIGID), an iteration-free, single-shot inverse design method to achieve the fast generation of metamaterial designs with on-demand functional behaviors. Unlike most existing methods, by exploiting the interpretability of the random forest, we eliminate the need to train an inverse model mapping responses to designs. Based on the likelihood of target satisfaction derived from the trained forward model, one can sample design solutions using Markov chain Monte Carlo methods. The RIGID method therefore functions as a generative model that captures the conditional distribution of satisfying solutions given a design target. We demonstrate the effectiveness and efficiency of RIGID on both acoustic and optical metamaterial design problems where only small datasets (less than 250 training samples) are available. Synthetic design problems are created to further illustrate and validate the mechanism of likelihood estimation in RIGID. This work offers a new perspective on solving on-demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design and eliminating its large data requirement.
- Abstract(参考訳): 外部刺激下での波動応答や変形誘起特性の変化などの機能的応答を持つメタマテリアルは、異なる条件下での様々な特性や機能を示すことができる。
本稿では,これらのメタマテリアルの迅速な逆設計を目標とした定性的機能的挙動を満たすことを目的とする。
この逆問題は、その難易度と非特異解の存在により困難である。
過去の研究は主に、データオンデマンドで、時間を要するトレーニングとハイパーパラメータチューニングを必要とし、解釈不可能なディープラーニングベースの手法に重点を置いてきた。
これらの制約を克服するために,Random-forest-based Interpretable Generative Inverse Design (RIGID)を提案する。
多くの既存手法とは異なり、ランダムな森の解釈可能性を活用することにより、設計に対する逆モデルマッピング応答をトレーニングする必要がなくなる。
トレーニングされたフォワードモデルから得られた目標満足度の可能性に基づいて、マルコフ連鎖モンテカルロ法を用いて設計ソリューションをサンプリングすることができる。
したがって、RIGID法は、設計対象が与えられた満足解の条件分布をキャプチャする生成モデルとして機能する。
本稿では,RIGIDの音響的および光学的メタマテリアル設計問題に対する有効性と有効性を示す。
合成設計問題は、RIGIDにおける仮説推定のメカニズムをさらに説明し、検証するために作成される。
この研究は、オンデマンドの逆設計問題を解決するための新しい視点を提供し、解釈可能な機械学習を生成設計に組み込む可能性を示し、その大規模なデータ要求を排除している。
関連論文リスト
- The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
逆設計(英: inverse design)とは、目的関数の入力を最適化し、目的の結果を導出する問題を指す。
学習グラフニューラルネットワーク(GNN)の最近の進歩は、シミュレーション力学の正確で効率的で微分可能な推定に利用することができる。
本稿では, 分散拡散モデルを用いて, 逆設計問題の解法を効率的に行う方法を示し, より効率的な粒子サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-05T08:32:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Deep learning for size-agnostic inverse design of random-network 3D
printed mechanical metamaterials [11.097689467173666]
メカニカルメタマテリアルの実践的応用は、しばしば、与えられた性質の集合を生じさせる(複数の)マイクロアーキテクチャを見つけることが目的である逆問題の解決にかかわる。
本稿では,2つの深層学習モデル (DLM) と条件付き変分オートエンコーダ (CVAE) に基づく深部生成モデル (DGM) と直接有限要素シミュレーション (FE) の4つの分離モデルを組み合わせた「深部DRAM」というモジュラー手法を提案する。
論文 参考訳(メタデータ) (2022-12-22T21:32:02Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Mixed Integer Neural Inverse Design [27.43272793942742]
日常的なニューラルネットワークで非常に一般的なピースワイズ線形性は、混合整数線形プログラミングに基づく逆設計の定式化を可能にする。
我々の混合整数逆設計は、大域的最適あるいは近距離最適解を原則的に発見する。
論文 参考訳(メタデータ) (2021-09-27T09:19:41Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
強靭なトポロジー最適化(RTO)問題は、最高の平均性能を持つ設計を特定する。
計算効率を向上するニューラルネットワーク手法を提案する。
本手法の数値解析は,Lブラケット構造のロバスト設計における単一点負荷と複数点負荷について述べる。
論文 参考訳(メタデータ) (2021-07-19T20:40:51Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
ガウス過程(GP)は、大きなデータセット、カテゴリ入力、および複数の応答を調節するのに困難である。
本稿では,変分推論によって得られた潜伏変数と関数を用いて,上記の課題を同時に解決するGPモデルを提案する。
本手法は三元系酸化物材料の機械学習と多スケール対応機構のトポロジー最適化に有用である。
論文 参考訳(メタデータ) (2021-06-26T02:17:23Z) - Robust Reconfigurable Intelligent Surfaces via Invariant Risk and Causal
Representations [55.50218493466906]
本稿では,データ分布の変化に伴うロバスト再構成可能なインテリジェントサーフェス(ris)システム設計の問題について検討する。
不変リスク最小化(IRM)の概念を用いて、複数の環境にまたがる不変因果表現を用いて、予測器が各環境に対して同時に最適となるようにする。
予測器を探すためにニューラルネットワークベースのソリューションを採用し、その性能は経験的リスク最小化に基づく設計に対するシミュレーションによって検証される。
論文 参考訳(メタデータ) (2021-05-04T21:36:31Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。