論文の概要: Toward using explainable data-driven surrogate models for treating performance-based seismic design as an inverse engineering problem
- arxiv url: http://arxiv.org/abs/2508.00286v1
- Date: Fri, 01 Aug 2025 03:08:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.720168
- Title: Toward using explainable data-driven surrogate models for treating performance-based seismic design as an inverse engineering problem
- Title(参考訳): 逆工学問題としての耐震設計のための説明可能なデータ駆動サロゲートモデルの利用に向けて
- Authors: Mohsen Zaker Esteghamati,
- Abstract要約: 本研究では, 逆工学的問題として, 性能に基づく耐震設計を扱う手法を提案する。
説明可能な機械学習モデルを実装することで、この方法論は、設計変数とパフォーマンスメトリクスを直接マッピングする。
開発された手法は、ロサンゼルスとチャールストンの鋼鉄とコンクリートモーメントフレームの2つの異なる在庫に適用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study presents a methodology to treat performance-based seismic design as an inverse engineering problem, where design parameters are directly derived to achieve specific performance objectives. By implementing explainable machine learning models, this methodology directly maps design variables and performance metrics, tackling computational inefficiencies of performance-based design. The resultant machine learning model is integrated as an evaluation function into a genetic optimization algorithm to solve the inverse problem. The developed methodology is then applied to two different inventories of steel and concrete moment frames in Los Angeles and Charleston to obtain sectional properties of frame members that minimize expected annualized seismic loss in terms of repair costs. The results show high accuracy of the surrogate models (e.g., R2> 90%) across a diverse set of building types, geometries, seismic design, and site hazard, where the optimization algorithm could identify the optimum values of members' properties for a fixed set of geometric variables, consistent with engineering principles.
- Abstract(参考訳): 本研究では, 設計パラメータを直接導出して特定の性能目標を達成する逆工学的問題として, 性能に基づく耐震設計を扱う手法を提案する。
この手法は、説明可能な機械学習モデルを実装することにより、設計変数と性能指標を直接マッピングし、性能ベース設計の計算非効率に対処する。
結果の機械学習モデルは、評価関数として遺伝的最適化アルゴリズムに統合され、逆問題を解決する。
開発手法は、ロサンゼルスとチャールストンの鋼鉄とコンクリートモーメントフレームの2つの異なる在庫に適用され、修理コストの観点から年次地震の損失を最小限に抑えるフレーム部材の断面特性を得る。
この結果から, 各種構造物群, ジオメトリー, 耐震設計, サイトハザードにまたがるサロゲートモデル(例: R2> 90%)の精度が向上した。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
大規模なニューラルネットワークは予測タスクに優れるが、タンパク質工学や材料発見といった設計問題への応用には、オフラインモデルベース最適化(MBO)の問題を解決する必要がある。
機能的グラフィカルモデル(FGM)を用いてブラックボックス関数の構造を学習するトランスフォーマーベースのアーキテクチャであるCliqueformerを提案する。
化学および遺伝子設計タスクを含む様々な領域において、Cliqueformerは既存の方法よりも優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-17T00:35:47Z) - From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures [0.7874708385247352]
本稿では、トポロジ最適化構造を解釈可能な幾何パラメータに逆エンジニアリングする新しい手法であるYOLOv8-TOを紹介する。
YOLOv8-TOはカスタムのYOLOv8モデルをトレーニングして、バイナリ密度分布から構造コンポーネントを自動的に検出し、再構築することで、これらの課題に対処する。
その結果, YOLOv8-TOは視覚的, 構造的に類似した設計の再構築において, 骨格化を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-04-29T15:01:09Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
本稿では,限られた計算量で制約されたシナリオにおける逆設計最適化プロセスの拡張を目的とした手法を提案する。
提案手法はエアフォイル逆設計とスカラーフィールド再構成の2つの異なる工学的逆設計問題について解析する。
特に、この方法は、任意の逆設計アプリケーションに適用可能であり、代表的低忠実MLモデルと高忠実度シミュレーションの相乗効果を容易にし、様々な集団ベース最適化アルゴリズムにシームレスに適用することができる。
論文 参考訳(メタデータ) (2023-12-06T18:20:46Z) - Weighted Unsupervised Domain Adaptation Considering Geometry Features
and Engineering Performance of 3D Design Data [2.306144660547256]
本稿では,3次元設計データの幾何学的特徴と工学的性能を考慮した2重非教師なし領域適応手法を提案する。
提案モデルでは, 最大von Mises応力の大きさとそれに対応する3次元路面車輪の位置を予測するために, 車輪衝撃解析問題を用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-08T00:26:44Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
本稿では, 鉄筋コンクリート(RC)構造物の設計最適化のためのメタヒューリスティック手法のパラメータを調整するためのいくつかの手法を提案する。
平均性能曲線の下での面積に基づいて, 実用性指標を提案する。
論文 参考訳(メタデータ) (2021-10-12T17:34:39Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。