論文の概要: Learning About Structural Errors in Models of Complex Dynamical Systems
- arxiv url: http://arxiv.org/abs/2401.00035v2
- Date: Tue, 28 May 2024 15:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 03:57:34.479456
- Title: Learning About Structural Errors in Models of Complex Dynamical Systems
- Title(参考訳): 複雑力学系のモデルにおける構造誤差の学習
- Authors: Jin-Long Wu, Matthew E. Levine, Tapio Schneider, Andrew Stuart,
- Abstract要約: 構造的誤りを学習するための一般的なアプローチ、原則、アルゴリズムについて説明する。
このアプローチの鍵となるのは、複雑なシステムのモデルの中に構造的エラーモデルを含めることです。
間接データから構造誤差モデルがどのように学習できるかを論じる。
- 参考スコア(独自算出の注目度): 1.2985782849141545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex dynamical systems are notoriously difficult to model because some degrees of freedom (e.g., small scales) may be computationally unresolvable or are incompletely understood, yet they are dynamically important. For example, the small scales of cloud dynamics and droplet formation are crucial for controlling climate, yet are unresolvable in global climate models. Semi-empirical closure models for the effects of unresolved degrees of freedom often exist and encode important domain-specific knowledge. Building on such closure models and correcting them through learning the structural errors can be an effective way of fusing data with domain knowledge. Here we describe a general approach, principles, and algorithms for learning about structural errors. Key to our approach is to include structural error models inside the models of complex systems, for example, in closure models for unresolved scales. The structural errors then map, usually nonlinearly, to observable data. As a result, however, mismatches between model output and data are only indirectly informative about structural errors, due to a lack of labeled pairs of inputs and outputs of structural error models. Additionally, derivatives of the model may not exist or be readily available. We discuss how structural error models can be learned from indirect data with derivative-free Kalman inversion algorithms and variants, how sparsity constraints enforce a "do no harm" principle, and various ways of modeling structural errors. We also discuss the merits of using non-local and/or stochastic error models. In addition, we demonstrate how data assimilation techniques can assist the learning about structural errors in non-ergodic systems. The concepts and algorithms are illustrated in two numerical examples based on the Lorenz-96 system and a human glucose-insulin model.
- Abstract(参考訳): 複雑な力学系は、いくつかの自由度(例えば、小さなスケール)が計算的に解決できない、あるいは完全に理解されていないため、モデル化が難しいことが知られているが、それらは動的に重要である。
例えば、雲の力学と液滴の形成の小さなスケールは気候の制御に不可欠であるが、地球規模の気候モデルでは解決不可能である。
未解決自由度の影響に対する半経験的閉包モデルは、しばしば存在し、重要なドメイン固有の知識を符号化する。
このようなクロージャモデルを構築し、構造的エラーを学習して修正することは、ドメイン知識でデータを融合する効果的な方法である。
ここでは、構造的エラーについて学ぶための一般的なアプローチ、原則、アルゴリズムについて説明する。
このアプローチの鍵となるのは、例えば未解決スケールのクロージャモデルにおいて、複雑なシステムのモデル内に構造的エラーモデルを含めることです。
構造誤差は、通常非線形に観測可能なデータにマッピングされる。
しかしながら、モデル出力とデータ間のミスマッチは、ラベル付き入力ペアの欠如と構造誤差モデルの出力不足により、構造誤差について間接的にのみ通知される。
さらに、モデルの微分は存在せず、容易に利用することができる。
微分自由カルマン反転アルゴリズムと変種を用いた間接データから構造誤差モデルをどのように学習するか、空間制約が「害のない」原理をどのように強制するか、構造誤差をモデル化する方法について論じる。
また、非局所的および確率的誤差モデルを使用することの利点についても論じる。
さらに,データ同化技術が非エルゴディックシステムにおける構造的誤りの学習にどのように役立つかを示す。
概念とアルゴリズムは、Lorenz-96システムとヒトグルコース-インスリンモデルに基づく2つの数値例で示される。
関連論文リスト
- Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Rank-Minimizing and Structured Model Inference [7.067529286680843]
この研究は、構造の形にエンコードされた物理的な洞察を持つデータからモデルを推論する手法を導入する。
提案手法は最小ランク解の方程式を数値的に解き、低次モデルを得る。
数値実験により、構造保存とランクの組み合わせは、同等の予測品質のモデルよりも桁違いに低い自由度を持つ正確なモデルをもたらすことが示された。
論文 参考訳(メタデータ) (2023-02-19T09:46:35Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Constitutive model characterization and discovery using physics-informed
deep learning [0.0]
モデルの特徴と発見のための物理インフォームド・ラーニング・マシンに基づく新しい手法を提案する。
提案するフレームワークは,von Misesファミリーとは異なるデータセットを記述する基盤モデルを効率的に同定できることを実証する。
論文 参考訳(メタデータ) (2022-03-18T08:10:02Z) - Discrepancy Modeling Framework: Learning missing physics, modeling
systematic residuals, and disambiguating between deterministic and random
effects [4.459306403129608]
現代の力学系では、モデルと測定の相違は量子化の低下につながる。
本稿では,欠落した物理を識別し,モデル-測定ミスマッチを解消するための不一致モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-10T05:37:24Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
私たちはMEDIDAというフレームワークを紹介します: 解釈可能性とデータ同化を伴うモデルエラー発見。
MEDIDAでは、まず、観測状態と予測状態の差からモデル誤差を推定する。
観測結果がノイズである場合、まず、アンサンブルカルマンフィルタ(EnKF)のようなデータ同化手法を用いて、システムのノイズフリー解析状態を提供する。
最後に、レバレンスベクトルマシン(RVM)のような方程式発見手法、すなわちスパーシィプロモーティングベイズ法を用いて、解釈可能でパシモニアスでクローズドな解を同定する。
論文 参考訳(メタデータ) (2021-10-01T17:19:28Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。