Causal State Distillation for Explainable Reinforcement Learning
- URL: http://arxiv.org/abs/2401.00104v2
- Date: Mon, 1 Apr 2024 04:31:34 GMT
- Title: Causal State Distillation for Explainable Reinforcement Learning
- Authors: Wenhao Lu, Xufeng Zhao, Thilo Fryen, Jae Hee Lee, Mengdi Li, Sven Magg, Stefan Wermter,
- Abstract summary: Reinforcement learning (RL) is a powerful technique for training intelligent agents, but understanding why these agents make specific decisions can be challenging.
Various approaches have been explored to address this problem, with one promising avenue being reward decomposition (RD)
RD is appealing as it sidesteps some of the concerns associated with other methods that attempt to rationalize an agent's behaviour in a post-hoc manner.
We present an extension of RD that goes beyond sub-rewards to provide more informative explanations.
- Score: 16.998047658978482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a powerful technique for training intelligent agents, but understanding why these agents make specific decisions can be quite challenging. This lack of transparency in RL models has been a long-standing problem, making it difficult for users to grasp the reasons behind an agent's behaviour. Various approaches have been explored to address this problem, with one promising avenue being reward decomposition (RD). RD is appealing as it sidesteps some of the concerns associated with other methods that attempt to rationalize an agent's behaviour in a post-hoc manner. RD works by exposing various facets of the rewards that contribute to the agent's objectives during training. However, RD alone has limitations as it primarily offers insights based on sub-rewards and does not delve into the intricate cause-and-effect relationships that occur within an RL agent's neural model. In this paper, we present an extension of RD that goes beyond sub-rewards to provide more informative explanations. Our approach is centred on a causal learning framework that leverages information-theoretic measures for explanation objectives that encourage three crucial properties of causal factors: causal sufficiency, sparseness, and orthogonality. These properties help us distill the cause-and-effect relationships between the agent's states and actions or rewards, allowing for a deeper understanding of its decision-making processes. Our framework is designed to generate local explanations and can be applied to a wide range of RL tasks with multiple reward channels. Through a series of experiments, we demonstrate that our approach offers more meaningful and insightful explanations for the agent's action selections.
Related papers
- Semifactual Explanations for Reinforcement Learning [1.5320737596132754]
Reinforcement Learning (RL) is a learning paradigm in which the agent learns from its environment through trial and error.
Deep reinforcement learning (DRL) algorithms represent the agent's policies using neural networks, making their decisions difficult to interpret.
Explaining the behaviour of DRL agents is necessary to advance user trust, increase engagement, and facilitate integration with real-life tasks.
arXiv Detail & Related papers (2024-09-09T08:37:47Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations.
RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Sim-to-Real Causal Transfer: A Metric Learning Approach to
Causally-Aware Interaction Representations [62.48505112245388]
We take an in-depth look at the causal awareness of modern representations of agent interactions.
We show that recent representations are already partially resilient to perturbations of non-causal agents.
We propose a metric learning approach that regularizes latent representations with causal annotations.
arXiv Detail & Related papers (2023-12-07T18:57:03Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - GANterfactual-RL: Understanding Reinforcement Learning Agents'
Strategies through Visual Counterfactual Explanations [0.7874708385247353]
We propose a novel but simple method to generate counterfactual explanations for RL agents.
Our method is fully model-agnostic and we demonstrate that it outperforms the only previous method in several computational metrics.
arXiv Detail & Related papers (2023-02-24T15:29:43Z) - Redefining Counterfactual Explanations for Reinforcement Learning:
Overview, Challenges and Opportunities [2.0341936392563063]
Most explanation methods for AI are focused on developers and expert users.
Counterfactual explanations offer users advice on what can be changed in the input for the output of the black-box model to change.
Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system.
arXiv Detail & Related papers (2022-10-21T09:50:53Z) - Experiential Explanations for Reinforcement Learning [15.80179578318569]
Reinforcement Learning systems can be complex and non-interpretable.
We propose a technique, Experiential Explanations, to generate counterfactual explanations.
arXiv Detail & Related papers (2022-10-10T14:27:53Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
We study more human-like RL agents which incorporate an established model of human-irrationality, the Rational Inattention (RI) model.
RIRL models the cost of cognitive information processing using mutual information.
We show that using RIRL yields a rich spectrum of new equilibrium behaviors that differ from those found under rational assumptions.
arXiv Detail & Related papers (2022-01-18T20:54:00Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.