論文の概要: Multiform Evolution for High-Dimensional Problems with Low Effective
Dimensionality
- arxiv url: http://arxiv.org/abs/2401.00168v1
- Date: Sat, 30 Dec 2023 08:13:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 18:29:23.870948
- Title: Multiform Evolution for High-Dimensional Problems with Low Effective
Dimensionality
- Title(参考訳): 低有効次元の高次元問題に対する多形進化
- Authors: Yaqing Hou, Mingyang Sun, Abhishek Gupta, Yaochu Jin, Haiyin Piao,
Hongwei Ge, Qiang Zhang
- Abstract要約: 進化的アルゴリズムを高次元最適化問題に拡張する。
全ての定式化を単一のマルチタスク設定に統一するマルチフォーム進化アルゴリズムを開発した。
その結果、目的タスクは様々な低次元探索で進化した解を効率的に再利用することができる。
- 参考スコア(独自算出の注目度): 36.44425198302701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we scale evolutionary algorithms to high-dimensional
optimization problems that deceptively possess a low effective dimensionality
(certain dimensions do not significantly affect the objective function). To
this end, an instantiation of the multiform optimization paradigm is presented,
where multiple low-dimensional counterparts of a target high-dimensional task
are generated via random embeddings. Since the exact relationship between the
auxiliary (low-dimensional) tasks and the target is a priori unknown, a
multiform evolutionary algorithm is developed for unifying all formulations
into a single multi-task setting. The resultant joint optimization enables the
target task to efficiently reuse solutions evolved across various
low-dimensional searches via cross-form genetic transfers, hence speeding up
overall convergence characteristics. To validate the overall efficacy of our
proposed algorithmic framework, comprehensive experimental studies are carried
out on well-known continuous benchmark functions as well as a set of practical
problems in the hyper-parameter tuning of machine learning models and deep
learning models in classification tasks and Predator-Prey games, respectively.
- Abstract(参考訳): 本稿では、進化的アルゴリズムを低有効次元性(特定の次元が目的関数に有意な影響を与えない)を知覚的に持つ高次元最適化問題に拡張する。
この目的のために、対象の高次元タスクの複数の低次元対応をランダム埋め込みによって生成するマルチフォーム最適化パラダイムのインスタンス化が提示される。
補助的(低次元)タスクと対象との正確な関係は未定であるため、全ての定式化を単一のマルチタスク設定に統一するマルチフォーム進化アルゴリズムが開発されている。
この共同最適化により、ターゲットタスクは、クロスフォームな遺伝的トランスファーを通じて、様々な低次元探索で進化した解を効率的に再利用することができる。
提案するアルゴリズムフレームワークの総合的有効性を検証するため,よく知られた連続ベンチマーク機能と,分類タスクにおける機械学習モデルとディープラーニングモデルのハイパーパラメータチューニングおよびプレデター・プレイゲームにおける一連の実践的問題について,総合的な実験を行った。
関連論文リスト
- Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
特徴の選択は、特に高次元データセットにおいて、機械学習において重要なステップである。
本稿では,LMSSSと呼ばれる探索空間の縮小に基づく大規模多目的進化アルゴリズムを提案する。
提案アルゴリズムの有効性は、15の大規模データセットに対する包括的実験によって実証される。
論文 参考訳(メタデータ) (2024-10-13T23:06:10Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
本稿では,高次元特徴選択問題,すなわちMO-FSEMTのための新しいEMTフレームワークを開発する。
タスク固有の知識伝達機構は、各タスクの利点情報を活用するように設計され、高品質なソリューションの発見と効果的な伝達を可能にする。
論文 参考訳(メタデータ) (2024-01-03T06:34:39Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Effective and Efficient Evolutionary Algorithm for Many-Objective
Optimization [2.5594423685710814]
様々な多目的問題に対処できる効率的な進化的アルゴリズム(E3A)を開発した。
SDEにインスパイアされたE3Aでは,新しい集団維持法が提案されている。
我々は、広範囲な実験を行い、E3Aが11の最先端の多目的進化アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:35:46Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。