論文の概要: An $\ell^1$-Plug-and-Play Approach for MPI Using a Zero Shot Denoiser with Evaluation on the 3D Open MPI Dataset
- arxiv url: http://arxiv.org/abs/2401.00275v2
- Date: Wed, 22 May 2024 15:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 11:46:15.493574
- Title: An $\ell^1$-Plug-and-Play Approach for MPI Using a Zero Shot Denoiser with Evaluation on the 3D Open MPI Dataset
- Title(参考訳): 3次元オープンMPIデータセットを用いたゼロショットデノイザを用いたMPIの$\ell^1$-Plug-and-Playアプローチ
- Authors: Vladyslav Gapyak, Corinna Rentschler, Thomas März, Andreas Weinmann,
- Abstract要約: 本稿では,$ell1$-priorの汎用ゼロショットデノイザをベースとしたプラグアンドプレイ方式を提案する。
我々は,3次元オープンMPIデータセットにおけるゼロショットプラグアンドプレイ方式の定量的,定性的な評価を行う。
- 参考スコア(独自算出の注目度): 1.612440288407791
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objective: Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Approach: We validate the reconstruction parameters of the method on a hybrid dataset and compare it with the baseline Tikhonov, DIP and the previous PP-MPI, which is a plug-and-play method with denoiser trained on MPI-friendly data. Main results: We offer a quantitative and qualitative evaluation of the zero-shot plug-and-play approach on the 3D Open MPI dataset. Moreover, we show the quality of the approach with different levels of preprocessing of the data. Significance: The proposed method employs a zero-shot denoiser which has not been trained for the MPI task and therefore saves the cost for training. Moreover, it offers a method that can be potentially applied in future MPI contexts.
- Abstract(参考訳): 目的:磁気粒子イメージング(MPI)は,近年注目されている医療画像モダリティである。
MPIの利点の1つは、高時間分解能であり、この技術は試料をあらゆる種類の電離放射線に曝さないことである。
印加磁場に対する磁性ナノ粒子の非線形応答に基づく。
受信コイルで測定された電気信号から、粒子濃度を再構成する必要がある。
復元問題の不備から、古典的チホノフ正則化や反復的手法から現代の機械学習アプローチに至るまで、早期停止方法から様々なレギュラー化手法が提案されている。
本研究は後者のクラスに寄与する:$\ell^1$-priorの汎用ゼロショットデノイザに基づくプラグアンドプレイアプローチを提案する。
アプローチ: 本手法をハイブリッドデータセット上で検証し, ベースラインであるTikhonov, DIP, 以前のPP-MPIと比較する。
主な結果: 3D Open MPIデータセット上でのゼロショットプラグアンドプレイ方式の定量的,定性的な評価を行う。
さらに、データの事前処理のレベルが異なるアプローチの質を示す。
意義: 提案手法は, MPIタスクの訓練を受けていないゼロショットデノイザを用いており, トレーニングコストを削減している。
さらに、将来のMPIコンテキストに適用可能なメソッドを提供する。
関連論文リスト
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
我々はMRIにおける定量的パラメータマッピングの新しいパラダイムを導入し、実証する。
独立画素の仮定を破る自己教師型深部変分法を提案する。
そこで本手法は,dMRIやqMRIなどのパラメータマッピング手法の臨床応用を支援することができる。
論文 参考訳(メタデータ) (2024-11-16T11:11:36Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
定量的MRI(qMRI)は、組織特性に関連する客観的パラメータを提供することにより、重み付け画像よりも大きな利点を提供する。
深層学習に基づく手法は、一連の重み付き画像から定量的マップを推定する効果を実証している。
深部生成モデルを用いたqMRIの新しい手法であるqMRIディフューザを提案する。
論文 参考訳(メタデータ) (2024-07-23T13:49:19Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - NPB-REC: A Non-parametric Bayesian Deep-learning Approach for Undersampled MRI Reconstruction with Uncertainty Estimation [2.6089354079273512]
NPB-RECは不確実性推定を伴うアンダーサンプルデータからのMRI再構成のための非パラメトリックフレームワークである。
トレーニング中に、ネットワークパラメータの後方分布を特徴付けるために、グラディエント・ランゲヴィン・ダイナミクス(Gradient Langevin Dynamics)を用いる。
提案手法は,PSNRとSSIMを用いて再現精度において,ベースラインよりも優れている。
論文 参考訳(メタデータ) (2024-04-06T08:25:33Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
拡散モデルを用いた重畳音源の分離手法を提案する。
高周波(RF)システムへの応用によって、我々は、基礎となる離散的な性質を持つ情報源に興味を持っている。
提案手法は,最近提案されたスコア蒸留サンプリング方式のマルチソース拡張と見なすことができる。
論文 参考訳(メタデータ) (2023-06-26T04:12:40Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
定量的磁気共鳴イメージング(qMRI)は、生体物理パラメータの再現可能な測定を可能にする。
この課題は、取得した生データから所望の組織パラメーターマップを得るために、非線形で不適切な逆問題を解決することである。
我々は、信号、取得モデルに関する知識を統合した新しいqMRI再構成手法であるPINQIを提案し、単一エンドツーエンドのトレーニング可能なニューラルネットワークへの正規化を学習した。
論文 参考訳(メタデータ) (2023-06-19T15:37:53Z) - Multi-View Photometric Stereo Revisited [100.97116470055273]
多視点測光ステレオ(MVPS)は、画像から被写体を詳細に正確に3D取得する方法として好まれる。
MVPSは異方性や光沢などの他の対象物質と同様に,等方性に対しても有効である。
提案手法は、複数のベンチマークデータセットで広範囲にテストした場合に、最先端の結果を示す。
論文 参考訳(メタデータ) (2022-10-14T09:46:15Z) - Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models [87.48867245544106]
CT(Computed Tomography)とMRI(Magnetic Resonance Imaging)における医用画像の再構成は重要な逆問題である
機械学習に基づく既存のソリューションは通常、測定結果を医療画像に直接マッピングするモデルを訓練する。
本稿では,最近導入されたスコアベース生成モデルを利用して,逆問題解決のための教師なし手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T05:41:12Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Deep image prior for 3D magnetic particle imaging: A quantitative
comparison of regularization techniques on Open MPI dataset [2.2366638308792735]
MPIは、医療応用の可能性を継続的に増加させている。
これらの応用における性能向上の前提条件は、画像再構成問題に対する適切な解法である。
本稿では,ディープニューラルネットワークによる解の表現を基盤とした,より深い画像に基づく新しい再構成手法について検討する。
論文 参考訳(メタデータ) (2020-07-03T10:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。