論文の概要: Deep image prior for 3D magnetic particle imaging: A quantitative
comparison of regularization techniques on Open MPI dataset
- arxiv url: http://arxiv.org/abs/2007.01593v1
- Date: Fri, 3 Jul 2020 10:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:18:59.327460
- Title: Deep image prior for 3D magnetic particle imaging: A quantitative
comparison of regularization techniques on Open MPI dataset
- Title(参考訳): 3次元磁気粒子イメージングに先立つ深部画像:オープンMPIデータセットにおける正規化手法の定量的比較
- Authors: S\"oren Dittmer, Tobias Kluth, Mads Thorstein Roar Henriksen and Peter
Maass
- Abstract要約: MPIは、医療応用の可能性を継続的に増加させている。
これらの応用における性能向上の前提条件は、画像再構成問題に対する適切な解法である。
本稿では,ディープニューラルネットワークによる解の表現を基盤とした,より深い画像に基づく新しい再構成手法について検討する。
- 参考スコア(独自算出の注目度): 2.2366638308792735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic particle imaging (MPI) is an imaging modality exploiting the
nonlinear magnetization behavior of (super-)paramagnetic nanoparticles to
obtain a space- and often also time-dependent concentration of a tracer
consisting of these nanoparticles. MPI has a continuously increasing number of
potential medical applications. One prerequisite for successful performance in
these applications is a proper solution to the image reconstruction problem.
More classical methods from inverse problems theory, as well as novel
approaches from the field of machine learning, have the potential to deliver
high-quality reconstructions in MPI. We investigate a novel reconstruction
approach based on a deep image prior, which builds on representing the solution
by a deep neural network. Novel approaches, as well as variational and
iterative regularization techniques, are compared quantitatively in terms of
peak signal-to-noise ratios and structural similarity indices on the publicly
available Open MPI dataset.
- Abstract(参考訳): 磁性粒子イメージング(MPI)は、(超)超磁性ナノ粒子の非線形磁化挙動を利用して、これらのナノ粒子からなるトレーサの空間的かつ時依存的な濃度を得る。
MPIは医療応用の可能性を継続的に増している。
これらのアプリケーションの性能向上の前提条件は、画像再構成問題に対する適切な解決策である。
逆問題理論からのより古典的な手法や機械学習の分野からの新たなアプローチは、MPIに高品質な再構築をもたらす可能性がある。
本研究では,深層ニューラルネットワークによる解の表現に基づく,先行した深層画像に基づく新しい再構成手法について検討する。
新しい手法、および変分および反復正則化手法は、公開可能なOpen MPIデータセット上のピーク信号-雑音比と構造的類似度指標の観点から定量的に比較される。
関連論文リスト
- Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
我々はMR画像とエッジの両方に固有の個別正規化器を組み込むだけでなく、協調正規化器を強制してそれらの相関を効果的に確立するジョイントエッジ最適化モデルを構築した。
具体的には、エッジ情報を非エッジ確率マップで定義し、最適化プロセス中に画像再構成を誘導する。
一方、画像やエッジに関連するレギュレータは、それぞれ固有のアプリオリ情報を自動的に学習するために、深く展開するネットワークに組み込まれる。
論文 参考訳(メタデータ) (2024-05-09T05:51:33Z) - An $\ell^1$-Plug-and-Play Approach for MPI Using a Zero Shot Denoiser with Evaluation on the 3D Open MPI Dataset [1.612440288407791]
本稿では,$ell1$-priorの汎用ゼロショットデノイザをベースとしたプラグアンドプレイ方式を提案する。
我々は,3次元オープンMPIデータセットにおけるゼロショットプラグアンドプレイ方式の定量的,定性的な評価を行う。
論文 参考訳(メタデータ) (2023-12-30T16:27:43Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
我々は、リカレント推論マシンに基づくニューラルネットワークを用いて、背景画像の歪みのない画像と、画素マップとしてのレンズ質量密度分布を再構成する。
従来のパラメトリックモデルと比較して、提案手法はより表現力が高く、複雑な質量分布を再構成することができる。
論文 参考訳(メタデータ) (2023-01-10T19:00:12Z) - Aberration control in quantitative widefield quantum microscopy [0.0]
画像システムにおける光収差は,計測量に大きな系統的誤差を生じさせる可能性が示唆された。
我々はこれらの効果をモデル化するための単純な理論的枠組みを導入し、点拡散関数の概念をスペクトルイメージングの領域に拡張する。
論文 参考訳(メタデータ) (2022-07-26T06:30:12Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction [21.317550364310343]
磁気共鳴(MR)画像取得時間の減少は、MRI検査をよりアクセスしやすくする可能性がある。
そこで我々は,K空間と画像領域の協調生成モデルを提案し,アンダーサンプル計測からMRデータを包括的に推定する。
実験による最先端技術との比較により, 提案手法は再構成における誤差が少なく, 異なる加速度因子下では安定であることがわかった。
論文 参考訳(メタデータ) (2022-03-21T07:38:59Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。