論文の概要: Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence
- arxiv url: http://arxiv.org/abs/2401.00286v1
- Date: Sat, 30 Dec 2023 17:36:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:08:48.500880
- Title: Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence
- Title(参考訳): 自律的な脅威追跡 - AI駆動型脅威知能のパラダイム
- Authors: Siva Raja Sindiramutty,
- Abstract要約: 人工知能(AI)と従来の脅威インテリジェンス方法論の融合を概観する。
従来の脅威インテリジェンスプラクティスに対するAIと機械学習の変革的な影響を検査する。
ケーススタディと評価は、AI駆動の脅威インテリジェンスを採用する組織から学んだ成功物語と教訓を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats.
- Abstract(参考訳): サイバーセキュリティの進化は、AIによる脅威知能の領域における重要なパラダイムとして、自律的な脅威狩りが出現するきっかけとなった。
このレビューは、自律的な脅威狩りの複雑な風景をナビゲートし、その重要性とサイバー防御機構の強化における重要な役割を探求する。
本稿では,人工知能(AI)と従来の脅威知能手法の融合に着目し,現代のサイバー脅威と戦うための自律的アプローチの必要性と進化について述べる。
基本的AI駆動の脅威インテリジェンスに関する包括的な調査を通じて、このレビューは、従来の脅威インテリジェンスプラクティスに対するAIと機械学習の変革的な影響を強調している。
それは、自律的な脅威狩りの基盤となる概念的枠組みを解明し、そのコンポーネントをスポットライトし、脅威狩りプロセス内でAIアルゴリズムをシームレスに統合する。
と。
AI駆動モデルにおけるスケーラビリティ、解釈可能性、倫理的考慮を含む課題に関する洞察豊かな議論は、この議論を豊かにする。
さらに、ケーススタディと評価を照らし、実世界の実践を紹介し、AIによる脅威知能を取り入れた組織が学んだ成功談と教訓について説明する。
結論として、このレビューは重要な洞察を集約し、サイバーセキュリティの未来に対する自律的な脅威狩りの実質的な影響を強調した。
それは、進化する脅威に対してサイバー防衛を強化するためのAI駆動アプローチの可能性を活用するために、継続的な研究と協力的な努力の重要性を浮き彫りにしている。
関連論文リスト
- Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。