Glimpse: Generalized Locality for Scalable and Robust CT
- URL: http://arxiv.org/abs/2401.00816v3
- Date: Thu, 12 Jun 2025 08:06:30 GMT
- Title: Glimpse: Generalized Locality for Scalable and Robust CT
- Authors: AmirEhsan Khorashadizadeh, Valentin Debarnot, Tianlin Liu, Ivan Dokmanić,
- Abstract summary: We introduce Glimpse, a local coordinate-based neural network for computed tomography which reconstructs a pixel value by processing only the measurements associated with the neighborhood of the pixel.<n>Glimpse significantly outperforms successful CNNs on OOD samples, while achieving comparable or better performance on in-distribution test data.<n>Glimpse is fully differentiable and can be used plug-and-play in arbitrary deep learning architectures.
- Score: 10.657105348034753
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep learning has become the state-of-the-art approach to medical tomographic imaging. A common approach is to feed the result of a simple inversion, for example the backprojection, to a multiscale convolutional neural network (CNN) which computes the final reconstruction. Despite good results on in-distribution test data, this often results in overfitting certain large-scale structures and poor generalization on out-of-distribution (OOD) samples. Moreover, the memory and computational complexity of multiscale CNNs scale unfavorably with image resolution, making them impractical for application at realistic clinical resolutions. In this paper, we introduce Glimpse, a local coordinate-based neural network for computed tomography which reconstructs a pixel value by processing only the measurements associated with the neighborhood of the pixel. Glimpse significantly outperforms successful CNNs on OOD samples, while achieving comparable or better performance on in-distribution test data and maintaining a memory footprint almost independent of image resolution; 5GB memory suffices to train on 1024x1024 images which is orders of magnitude less than CNNs. Glimpse is fully differentiable and can be used plug-and-play in arbitrary deep learning architectures, enabling feats such as correcting miscalibrated projection orientations. Our implementation and Google Colab demo can be accessed at https://github.com/swing-research/Glimpse.
Related papers
- LoFi: Neural Local Fields for Scalable Image Reconstruction [11.544632963705858]
We introduce a coordinate-based framework for solving imaging inverse problems, termed LoFi (Local Field)
LoFi processes local information at each coordinate separately by multi-layer perceptrons (MLPs), recovering the object at that specific coordinate.
LoFi achieves excellent generalization to out-of-distribution data with memory usage almost independent of image resolution.
arXiv Detail & Related papers (2024-11-07T18:58:57Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
We propose a Multi-view Pixel-wise Contrastive algorithm (MPC) for image forgery localization.
Specifically, we first pre-train the backbone network with the supervised contrastive loss.
Then the localization head is fine-tuned using the cross-entropy loss, resulting in a better pixel localizer.
arXiv Detail & Related papers (2024-06-19T13:51:52Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Memory Efficient Patch-based Training for INR-based GANs [13.19626131847784]
Training existing approaches require a heavy computational cost proportional to the image resolution.
We propose a multi-stage patch-based training, a novel and scalable approach that can train INR-based GANs with a flexible computational cost.
Specifically, our method allows to generate and discriminate by patch to learn the local details of the image and learn global structural information.
arXiv Detail & Related papers (2022-07-04T13:28:53Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Class Balanced PixelNet for Neurological Image Segmentation [20.56747443955369]
We propose an automatic brain tumor segmentation approach (e.g., PixelNet) using a pixel-level convolutional neural network (CNN)
The proposed model has achieved promising results in brain tumor and ischemic stroke segmentation datasets.
arXiv Detail & Related papers (2022-04-23T10:57:54Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
This paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers.
Experiments on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T18:10:26Z) - ACORN: Adaptive Coordinate Networks for Neural Scene Representation [40.04760307540698]
Current neural representations fail to accurately represent images at resolutions greater than a megapixel or 3D scenes with more than a few hundred thousand polygons.
We introduce a new hybrid implicit-explicit network architecture and training strategy that adaptively allocates resources during training and inference.
We demonstrate the first experiments that fit gigapixel images to nearly 40 dB peak signal-to-noise ratio.
arXiv Detail & Related papers (2021-05-06T16:21:38Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Learning With Context Feedback Loop for Robust Medical Image
Segmentation [1.881091632124107]
We present a fully automatic deep learning method for medical image segmentation using two systems.
The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image.
The predicted probabilistic output of the forward system is then encoded by a fully convolutional network (FCN)-based context feedback system.
arXiv Detail & Related papers (2021-03-04T05:44:59Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - PCLs: Geometry-aware Neural Reconstruction of 3D Pose with Perspective
Crop Layers [111.55817466296402]
We introduce Perspective Crop Layers (PCLs) - a form of perspective crop of the region of interest based on the camera geometry.
PCLs deterministically remove the location-dependent perspective effects while leaving end-to-end training and the number of parameters of the underlying neural network.
PCL offers an easy way to improve the accuracy of existing 3D reconstruction networks by making them geometry aware.
arXiv Detail & Related papers (2020-11-27T08:48:43Z) - Region Growing with Convolutional Neural Networks for Biomedical Image
Segmentation [1.5469452301122177]
We present a methodology that uses convolutional neural networks (CNNs) for segmentation by iteratively growing predicted mask regions in each coordinate direction.
We use a threshold on the CNN probability scores to determine whether pixels are added to the region and the iteration continues until no new pixels are added to the region.
Our method is able to achieve high segmentation accuracy and preserve biologically realistic morphological features while leveraging small amounts of training data and maintaining computational efficiency.
arXiv Detail & Related papers (2020-09-23T17:53:00Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z) - SAUNet: Shape Attentive U-Net for Interpretable Medical Image
Segmentation [2.6837973648527926]
We present a new architecture called Shape Attentive U-Net (SAUNet) which focuses on model interpretability and robustness.
Our method achieves state-of-the-art results on the two large public cardiac MRI image segmentation datasets of SUN09 and AC17.
arXiv Detail & Related papers (2020-01-21T16:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.