論文の概要: Taking the Next Step with Generative Artificial Intelligence: The
Transformative Role of Multimodal Large Language Models in Science Education
- arxiv url: http://arxiv.org/abs/2401.00832v1
- Date: Mon, 1 Jan 2024 18:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 15:32:19.145016
- Title: Taking the Next Step with Generative Artificial Intelligence: The
Transformative Role of Multimodal Large Language Models in Science Education
- Title(参考訳): 生成型人工知能の次のステップを歩む - 理科教育におけるマルチモーダル大規模言語モデルの変容的役割-
- Authors: Arne Bewersdorff, Christian Hartmann, Marie Hornberger, Kathrin
Se{\ss}ler, Maria Bannert, Enkelejda Kasneci, Gjergji Kasneci, Xiaoming Zhai,
Claudia Nerdel
- Abstract要約: MLLM(Multimodal Large Language Models)は、テキスト、音声、視覚入力を含むマルチモーダルデータを処理できる。
本稿では,科学教育の中心的な側面におけるMLLMの変革的役割について,模範的な革新的な学習シナリオを提示することによって考察する。
- 参考スコア(独自算出の注目度): 14.679589098673416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of Artificial Intelligence (AI), particularly Large Language
Model (LLM)-based systems, in education has shown promise in enhancing teaching
and learning experiences. However, the advent of Multimodal Large Language
Models (MLLMs) like GPT-4 with vision (GPT-4V), capable of processing
multimodal data including text, sound, and visual inputs, opens a new era of
enriched, personalized, and interactive learning landscapes in education.
Grounded in theory of multimedia learning, this paper explores the
transformative role of MLLMs in central aspects of science education by
presenting exemplary innovative learning scenarios. Possible applications for
MLLMs could range from content creation to tailored support for learning,
fostering competencies in scientific practices, and providing assessment and
feedback. These scenarios are not limited to text-based and uni-modal formats
but can be multimodal, increasing thus personalization, accessibility, and
potential learning effectiveness. Besides many opportunities, challenges such
as data protection and ethical considerations become more salient, calling for
robust frameworks to ensure responsible integration. This paper underscores the
necessity for a balanced approach in implementing MLLMs, where the technology
complements rather than supplants the educator's role, ensuring thus an
effective and ethical use of AI in science education. It calls for further
research to explore the nuanced implications of MLLMs on the evolving role of
educators and to extend the discourse beyond science education to other
disciplines. Through the exploration of potentials, challenges, and future
implications, we aim to contribute to a preliminary understanding of the
transformative trajectory of MLLMs in science education and beyond.
- Abstract(参考訳): 教育における人工知能(AI)、特にLarge Language Model(LLM)ベースのシステムの統合は、教育と学習経験の強化を約束している。
しかし、gpt-4 with vision(gpt-4v)のようなマルチモーダル大規模言語モデル(mllm)の出現は、テキスト、音声、視覚入力を含むマルチモーダルデータを処理できるようになり、教育における豊かでパーソナライズされたインタラクティブな学習風景の新しい時代を開く。
本稿では,マルチメディア学習の理論を基礎として,科学教育の中心的側面におけるmllmの変容的役割について,模範的な革新的学習シナリオを提示することで考察する。
MLLMの応用は、コンテンツ作成から学習のための適切なサポート、科学的実践における能力の育成、評価とフィードバックの提供まで様々である。
これらのシナリオはテキストベースやユニモーダル形式に限らず、マルチモーダルになり、パーソナライズ、アクセシビリティ、潜在的な学習効率が向上する。
多くの機会に加えて、データ保護や倫理的考慮といった課題がより健全になり、責任ある統合を保証するための堅牢なフレームワークが求められます。
本稿では,理科教育におけるAIの効果的な倫理的活用を確実にするために,教育者の役割に取って代わるのではなく,技術が補完するMLLMの実装において,バランスのとれたアプローチの必要性を強調する。
教育者の役割の進化に対するmllmのニュアンス的含意を探求し、科学教育を越えて他の分野への談話を拡大するためにさらなる研究が求められている。
我々は,可能性,課題,将来的な意味の探索を通じて,理科教育などにおけるMLLMの変容軌道の予備的理解をめざす。
関連論文リスト
- A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
MLLM(Large Language Model)は、テキスト、画像、ビデオ、オーディオを統合し、モーダルな理解と生成のためのAIシステムを実現する。
Bookは、スケーラビリティ、堅牢性、およびクロスモーダル学習における重要な課題に対処しながら、MLLM実装の顕著な点について検討している。
倫理的考察、責任あるAI開発、そして今後の方向性に関する議論をまとめると、この権威あるリソースは理論的な枠組みと実践的な洞察の両方を提供する。
論文 参考訳(メタデータ) (2024-11-09T20:56:23Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Large Language Models for Education: A Survey [32.42330148200439]
大規模言語モデル(LLM)は、様々なアプリケーションでますます使われている。
LLMをスマート教育(LLMEdu)に利用することは、世界中の国々にとって重要な戦略的方向性である。
LLMは、教育の質の向上、教育モデルの変更、教師の役割の変更において大きな期待を示してきたが、これらの技術は依然としていくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-05-12T01:50:01Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
本稿では,Large Language Models (LLM) の非同期コース生成における利用について検討する。
LLMを利用したコースプロトタイプを開発し,ロバストなHuman-in-the-loopプロセスを実装した。
最初の発見は、このアプローチを採用することで、正確さや明快さを損なうことなく、コンテンツ作成を高速化できることを示している。
論文 参考訳(メタデータ) (2023-06-02T10:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。