Deep Learning-Based Detection for Marker Codes over Insertion and
Deletion Channels
- URL: http://arxiv.org/abs/2401.01155v1
- Date: Tue, 2 Jan 2024 11:13:01 GMT
- Title: Deep Learning-Based Detection for Marker Codes over Insertion and
Deletion Channels
- Authors: Guochen Ma, Xiaopeng Jiao, Jianjun Mu, Hui Han, and Yaming Yang
- Abstract summary: Marker code is an effective coding scheme to protect data from insertions and deletions.
It has potential applications in future storage systems, such as DNA storage and racetrack memory.
We propose two CSI-agnostic detecting algorithms for marker code based on deep learning.
- Score: 5.310666534758956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Marker code is an effective coding scheme to protect data from insertions and
deletions. It has potential applications in future storage systems, such as DNA
storage and racetrack memory. When decoding marker codes, perfect channel state
information (CSI), i.e., insertion and deletion probabilities, are required to
detect insertion and deletion errors. Sometimes, the perfect CSI is not easy to
obtain or the accurate channel model is unknown. Therefore, it is deserved to
develop detecting algorithms for marker code without the knowledge of perfect
CSI. In this paper, we propose two CSI-agnostic detecting algorithms for marker
code based on deep learning. The first one is a model-driven deep learning
method, which deep unfolds the original iterative detecting algorithm of marker
code. In this method, CSI become weights in neural networks and these weights
can be learned from training data. The second one is a data-driven method which
is an end-to-end system based on the deep bidirectional gated recurrent unit
network. Simulation results show that error performances of the proposed
methods are significantly better than that of the original detection algorithm
with CSI uncertainty. Furthermore, the proposed data-driven method exhibits
better error performances than other methods for unknown channel models.
Related papers
- DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
Machine Learning approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs)
Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks.
This paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples.
arXiv Detail & Related papers (2022-12-15T00:08:05Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Fiducial marker recovery and detection from severely truncated data in
navigation assisted spine surgery [5.731349529280083]
Fiducial markers are commonly used in navigation assisted minimally invasive spine surgery (MISS)
In practice, these markers might be located outside the field-of-view due to the limited detector sizes of C-arm cone-beam computed tomography (CBCT) systems.
We propose two fiducial marker detection methods: direct detection from distorted markers (direct method) and detection after marker recovery (recovery method)
arXiv Detail & Related papers (2021-08-25T13:52:58Z) - Intrusion detection in computer systems by using artificial neural
networks with Deep Learning approaches [0.0]
Intrusion detection into computer networks has become one of the most important issues in cybersecurity.
This paper focuses on the design and implementation of an intrusion detection system based on Deep Learning architectures.
arXiv Detail & Related papers (2020-12-15T19:12:23Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
This paper proposes an efficient and adaptive code-driven graph.
It is updated by decoding in the context of an auto-encoder.
Experiments on benchmarked datasets clearly show the superiority of our framework over the state-of-the-art hashing methods.
arXiv Detail & Related papers (2020-02-27T05:58:12Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.