論文の概要: Train-Free Segmentation in MRI with Cubical Persistent Homology
- arxiv url: http://arxiv.org/abs/2401.01160v1
- Date: Tue, 2 Jan 2024 11:43:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 14:12:06.698066
- Title: Train-Free Segmentation in MRI with Cubical Persistent Homology
- Title(参考訳): 立方形永続ホモロジーを用いたMRIにおけるトレインフリーセグメンテーション
- Authors: Anton Fran\c{c}ois and Rapha\"el Tinarrage
- Abstract要約: トポロジカルデータ解析(TDA)を用いたMRI画像の分割法について述べる。
これは3つのステップで機能し、まずは自動しきい値設定によってオブジェクト全体をセグメントに識別し、次に事前にトポロジが知られている特定の部分集合を検出し、最後にセグメンテーションの様々な成分を推論する。
脳MRIにおけるグリオブラスト腫分画の例について検討し、2次元スライスが円である胎児脳MRIにおいて、シリンダーを含む心臓MRIにおける心筋、および皮質プレート検出について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a new general method for segmentation in MRI scans using
Topological Data Analysis (TDA), offering several advantages over traditional
machine learning approaches. It works in three steps, first identifying the
whole object to segment via automatic thresholding, then detecting a
distinctive subset whose topology is known in advance, and finally deducing the
various components of the segmentation. Although convoking classical ideas of
TDA, such an algorithm has never been proposed separately from deep learning
methods. To achieve this, our approach takes into account, in addition to the
homology of the image, the localization of representative cycles, a piece of
information that seems never to have been exploited in this context. In
particular, it offers the ability to perform segmentation without the need for
large annotated data sets. TDA also provides a more interpretable and stable
framework for segmentation by explicitly mapping topological features to
segmentation components. By adapting the geometric object to be detected, the
algorithm can be adjusted to a wide range of data segmentation challenges. We
carefully study the examples of glioblastoma segmentation in brain MRI, where a
sphere is to be detected, as well as myocardium in cardiac MRI, involving a
cylinder, and cortical plate detection in fetal brain MRI, whose 2D slices are
circles. We compare our method to state-of-the-art algorithms.
- Abstract(参考訳): 本稿では,TDA(Topological Data Analysis)を用いたMRIスキャンにおけるセグメンテーションの新しい手法について述べる。
これは3つのステップで機能し、まずは自動しきい値設定によってオブジェクト全体をセグメントに識別し、次に事前にトポロジが知られている特定の部分集合を検出し、最後にセグメンテーションの様々な成分を推論する。
TDAの古典的概念を提唱する一方で、このようなアルゴリズムは深層学習法とは別々に提案されたことはない。
これを実現するために,画像のホモロジー,代表周期の局所化に加えて,この文脈では利用されなかったと思われる情報の断片を考慮に入れた。
特に、大きな注釈付きデータセットを必要とせずにセグメンテーションを実行する機能を提供する。
TDAはまた、トポロジ的特徴をセグメンテーションコンポーネントに明示的にマッピングすることで、セグメンテーションをより解釈可能で安定したフレームワークを提供する。
検出対象の幾何学的対象に適応することにより、アルゴリズムは幅広いデータセグメンテーション課題に適応することができる。
脳mriにおいて球体が検出されるグリオブラスト腫の例とシリンダーを含む心臓mriの心筋、および2次元スライスが円である胎児脳mriにおける皮質プレート検出について慎重に検討した。
本手法を最先端アルゴリズムと比較する。
関連論文リスト
- SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location
on MRI [13.912230325828943]
本稿では,MRIにおける骨分割のための汎用的,一般公開的なディープラーニングモデルを提案する。
提案モデルでは,完全自動セグメンテーションとプロンプトベースセグメンテーションの2つのモードで動作可能である。
1) さまざまなMRIプロトコルにまたがる新しいMRIデータセットの収集,注釈付けを行い,300以上の注釈付きボリュームと8485個の注釈付きスライスを含む。
論文 参考訳(メタデータ) (2024-01-23T18:59:25Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
医用画像セグメンテーションの学習を支援するために,解剖学的レベルで設計された汎用的な暗黙的ニューラルネットワークレンダリングフレームワークであるMORSEを提案する。
医用画像のセグメンテーションをエンドツーエンドのレンダリング問題として定式化する。
実験の結果,MORSEは異なる医療セグメントのバックボーンでうまく機能することが示された。
論文 参考訳(メタデータ) (2023-04-06T16:44:03Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
本稿では,異なるセグメンテーション手法の有効性を評価するために,新しいマルチモーダル評価(MME)手法を提案する。
本稿では, 検出特性, 境界アライメント, 均一性, 総体積, 相対体積など, 関連性, 解釈可能な新しい特徴を紹介する。
提案するアプローチはオープンソースで,使用することができる。
論文 参考訳(メタデータ) (2023-02-08T15:31:33Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
そこで我々は,TraSeTRを提案する。TraSeTR,TraSeTR,Trace-to-Segment Transformerは,手術器具のセグメンテーションを支援する。
TraSeTRは、機器の種類、位置、アイデンティティとインスタンスレベルの予測を共同で理由付けている。
提案手法の有効性を,3つの公開データセットに対して,最先端の計器型セグメンテーション結果を用いて実証した。
論文 参考訳(メタデータ) (2022-02-17T05:52:18Z) - Comparison of atlas-based and neural-network-based semantic segmentation
for DENSE MRI images [0.8701566919381223]
2つのセグメンテーション法(アトラス法とニューラルネット法)を比較した。
セグメンテーションはこれらの地域の平均変位を推定するための前提条件である。
論文 参考訳(メタデータ) (2021-09-29T00:42:43Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Unsupervised Region-based Anomaly Detection in Brain MRI with
Adversarial Image Inpainting [4.019851137611981]
本稿では,T1強調MRIのための完全自動非教師付き印字型脳腫瘍分割システムを提案する。
まず、Deep Convolutional Neural Network(DCNN)をトレーニングし、行方不明の健常な脳の領域を再構築する。
提案システムでは, 種々の腫瘍と抽象腫瘍を分離し, 平均偏差Diceスコアが0.176, 0.771, 標準偏差Diceスコアが得られた。
論文 参考訳(メタデータ) (2020-10-05T12:13:44Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。