論文の概要: NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic
environments
- arxiv url: http://arxiv.org/abs/2401.01189v1
- Date: Tue, 2 Jan 2024 12:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 14:01:40.831146
- Title: NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic
environments
- Title(参考訳): NID-SLAM: 動的環境におけるニューラルインシシシト表現に基づくRGB-D SLAM
- Authors: Ziheng Xu, Jianwei Niu, Qingfeng Li, Tao Ren, Chen Chen
- Abstract要約: 動的環境におけるニューラルSLAMの性能を大幅に向上させるNID-SLAMを提案する。
本稿では, セマンティックマスクにおける不正確な領域, 特に辺縁領域における不正確な領域を強化するための新しいアプローチを提案する。
また,ダイナミックシーンの選択戦略を導入し,大規模オブジェクトに対するカメラトラッキングの堅牢性を高める。
- 参考スコア(独自算出の注目度): 10.413523346264055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit representations have been explored to enhance visual SLAM
algorithms, especially in providing high-fidelity dense map. Existing methods
operate robustly in static scenes but struggle with the disruption caused by
moving objects. In this paper we present NID-SLAM, which significantly improves
the performance of neural SLAM in dynamic environments. We propose a new
approach to enhance inaccurate regions in semantic masks, particularly in
marginal areas. Utilizing the geometric information present in depth images,
this method enables accurate removal of dynamic objects, thereby reducing the
probability of camera drift. Additionally, we introduce a keyframe selection
strategy for dynamic scenes, which enhances camera tracking robustness against
large-scale objects and improves the efficiency of mapping. Experiments on
publicly available RGB-D datasets demonstrate that our method outperforms
competitive neural SLAM approaches in tracking accuracy and mapping quality in
dynamic environments.
- Abstract(参考訳): ニューラル暗黙表現は、特に高忠実度高密度マップの提供において、視覚SLAMアルゴリズムを強化するために研究されている。
既存の手法は静的な場面では頑健に動作するが、移動物体による破壊に苦慮する。
本稿では,動的環境におけるニューラルSLAMの性能を大幅に向上させるNID-SLAMを提案する。
本稿では,セマンティクスマスク,特に境界領域における不正確な領域を強化する新しい手法を提案する。
深度画像に存在する幾何情報を利用することで、動的物体の正確な除去を可能にし、カメラドリフトの確率を低減する。
さらに,ダイナミックシーンのキーフレーム選択戦略を導入し,大規模オブジェクトに対するカメラトラッキングの堅牢性を高め,マッピングの効率を向上する。
公開されているRGB-Dデータセットの実験により、我々の手法は動的環境における精度とマッピング品質の追跡において、競合するニューラルSLAMアプローチより優れていることが示された。
関連論文リスト
- V3D-SLAM: Robust RGB-D SLAM in Dynamic Environments with 3D Semantic Geometry Voting [1.3493547928462395]
動体とカメラのポーズの相関関係から,高度にダイナミックな環境下での同時位置決めとマッピング(SLAM)は困難である。
2つの軽量再評価段階を経て移動物体を除去するロバストな手法 V3D-SLAM を提案する。
TUM RGB-Dベンチマーク実験により,直近のSLAM法よりも高い性能を示した。
論文 参考訳(メタデータ) (2024-10-15T21:08:08Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
暗黙的な神経表現を伴う同時局所化とマッピング(SLAM)が注目されている。
動的環境のための新しいSLAMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T09:35:48Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
DDN-SLAMは,意味的特徴を統合した最初のリアルタイム高密度ニューラルネットワーク暗黙的SLAMシステムである。
既存の暗黙的SLAMシステムと比較して、動的データセットの追跡結果は平均軌道誤差(ATE)の精度が平均90%向上していることを示している。
論文 参考訳(メタデータ) (2024-01-03T05:42:17Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
神経性SLAMは近年顕著な進歩を遂げている。
既存の手法は、非理想的なシナリオにおいて重大な課題に直面します。
本稿では,最初のイベントRGBD暗黙的ニューラルSLAMフレームワークであるEN-SLAMを提案する。
論文 参考訳(メタデータ) (2023-11-18T08:48:58Z) - DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields [71.94156412354054]
動的ニューラルラジアンス場(DynaMoN)の高速かつロバストなカメラ位置推定法を提案する。
DynaMoNは、初期のカメラポーズ推定と高速で正確なノベルビュー合成のための静的集光線サンプリングのために動的コンテンツを処理している。
我々は,TUM RGB-DデータセットとBONN RGB-D Dynamicデータセットの2つの実世界の動的データセットに対するアプローチを広く評価した。
論文 参考訳(メタデータ) (2023-09-16T08:46:59Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
本稿では,モノクラーRGBD入力に対する高密度ニューラルネットワークの局所化とマッピング(SLAM)手法を提案する。
トラッキングとマッピングの両方が、同じポイントベースのニューラルシーン表現で実行可能であることを実証する。
論文 参考訳(メタデータ) (2023-04-09T16:48:26Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOTはインスタンスセグメンテーションとマルチビュー幾何を組み合わせて、動的オブジェクトのマスクを生成する。
実際にどのオブジェクトが動いているかを判断するために、DOTは、潜在的にダイナミックなオブジェクトの最初のインスタンスを抽出し、次に推定されたカメラモーションで、測光再投射誤差を最小限にして、そのようなオブジェクトを追跡する。
提案手法はORB-SLAM 2の精度とロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-09-30T18:36:28Z) - FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow [17.040818114071833]
ダイナミック/静的セグメンテーションとカメラのエゴモーション推定を同時に実現する新しいRGB-D SLAMソリューションを提案する。
我々の新しい特徴は、RGB-D点雲のダイナミックセマンティクスを強調するために光学フロー残基を使うことである。
論文 参考訳(メタデータ) (2020-03-11T04:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。