Survival Concept-Based Learning Models
- URL: http://arxiv.org/abs/2502.05950v1
- Date: Sun, 09 Feb 2025 16:41:04 GMT
- Title: Survival Concept-Based Learning Models
- Authors: Stanislav R. Kirpichenko, Lev V. Utkin, Andrei V. Konstantinov, Natalya M. Verbova,
- Abstract summary: Two novel models are proposed to integrate concept-based learning with survival analysis.
SurvCBM is based on the architecture of the well-known concept bottleneck model.
SurvRCM uses concepts as regularization to enhance accuracy.
- Score: 2.024925013349319
- License:
- Abstract: Concept-based learning enhances prediction accuracy and interpretability by leveraging high-level, human-understandable concepts. However, existing CBL frameworks do not address survival analysis tasks, which involve predicting event times in the presence of censored data -- a common scenario in fields like medicine and reliability analysis. To bridge this gap, we propose two novel models: SurvCBM (Survival Concept-based Bottleneck Model) and SurvRCM (Survival Regularized Concept-based Model), which integrate concept-based learning with survival analysis to handle censored event time data. The models employ the Cox proportional hazards model and the Beran estimator. SurvCBM is based on the architecture of the well-known concept bottleneck model, offering interpretable predictions through concept-based explanations. SurvRCM uses concepts as regularization to enhance accuracy. Both models are trained end-to-end and provide interpretable predictions in terms of concepts. Two interpretability approaches are proposed: one leveraging the linear relationship in the Cox model and another using an instance-based explanation framework with the Beran estimator. Numerical experiments demonstrate that SurvCBM outperforms SurvRCM and traditional survival models, underscoring the importance and advantages of incorporating concept information. The code for the proposed algorithms is publicly available.
Related papers
- LLM Pretraining with Continuous Concepts [71.98047075145249]
Next token prediction has been the standard training objective used in large language model pretraining.
We propose Continuous Concept Mixing (CoCoMix), a novel pretraining framework that combines discrete next token prediction with continuous concepts.
arXiv Detail & Related papers (2025-02-12T16:00:11Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
Concept Bottleneck Models (CBMs) can provide a principled way of disclosing and guiding model behaviors through human-understandable concepts.
We propose a novel framework designed to exploit pre-trained models while being immune to these biases, thereby reducing vulnerability to spurious correlations.
We evaluate the proposed method on multiple datasets, and the results demonstrate its effectiveness in reducing model reliance on spurious correlations while preserving its interpretability.
arXiv Detail & Related papers (2024-07-12T03:07:28Z) - Stochastic Concept Bottleneck Models [8.391254800873599]
Concept Bottleneck Models (CBMs) have emerged as a promising interpretable method whose final prediction is based on human-understandable concepts.
We propose Concept Bottleneck Models (SCBMs), a novel approach that models concept dependencies.
A single-concept intervention affects all correlated concepts, thereby improving intervention effectiveness.
arXiv Detail & Related papers (2024-06-27T15:38:37Z) - Do Concept Bottleneck Models Respect Localities? [14.77558378567965]
Concept-based methods explain model predictions using human-understandable concepts.
"Localities" involve using only relevant features when predicting a concept's value.
CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets.
arXiv Detail & Related papers (2024-01-02T16:05:23Z) - Relational Concept Bottleneck Models [13.311396882130033]
Concept Bottleneck Models (CBMs) are not designed to solve problems.
R-CBMs are capable of both representing standard CBMs and relational GNNs.
In particular, we show that R-CBMs support the generation of concept-based explanations.
arXiv Detail & Related papers (2023-08-23T08:25:33Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
Concept Bottleneck Models (CBMs) constitute a popular approach where hidden layers are tied to human understandable concepts.
We propose a simple yet highly intuitive interpretable framework based on Contrastive Language Image models and a single sparse linear layer.
We experimentally show, our framework not only outperforms recent CBM approaches accuracy-wise, but it also yields high per example concept sparsity.
arXiv Detail & Related papers (2023-08-21T15:16:19Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.