論文の概要: Taxonomy for Cybersecurity Threat Attributes and Countermeasures in Smart Manufacturing Systems
- arxiv url: http://arxiv.org/abs/2401.01374v1
- Date: Sat, 30 Dec 2023 02:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 10:39:12.023877
- Title: Taxonomy for Cybersecurity Threat Attributes and Countermeasures in Smart Manufacturing Systems
- Title(参考訳): スマートマニュファクチャリングシステムにおけるサイバーセキュリティの脅威要因と対策
- Authors: Md Habibor Rahman, Rocco Cassandro, Thorsten Wuest, Mohammed Shafae,
- Abstract要約: 既存の攻撃分類は、限られた攻撃範囲と限定的な脅威属性のみに焦点を当てている。
本稿では,製造システムにおけるサイバーセキュリティ脅威の包括的理解と評価を目的とした包括的攻撃分類法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An attack taxonomy offers a consistent and structured classification scheme to systematically understand, identify, and classify cybersecurity threat attributes. However, existing taxonomies only focus on a narrow range of attacks and limited threat attributes, lacking a comprehensive characterization of manufacturing cybersecurity threats. There is little to no focus on characterizing threat actors and their intent, specific system and machine behavioral deviations introduced by cyberattacks, system-level and operational implications of attacks, and potential countermeasures against those attacks. To close this pressing research gap, this work proposes a comprehensive attack taxonomy for a holistic understanding and characterization of cybersecurity threats in manufacturing systems. Specifically, it introduces taxonomical classifications for threat actors and their intent and potential alterations in system behavior due to threat events. The proposed taxonomy categorizes attack methods/vectors and targets/locations and incorporates operational and system-level attack impacts. This paper also presents a classification structure for countermeasures, provides examples of potential countermeasures, and explains how they fit into the proposed taxonomical classification. Finally, the implementation of the proposed taxonomy is illustrated using two realistic scenarios of attacks on typical smart manufacturing systems, as well as several real-world cyber-physical attack incidents and academic case studies. The developed manufacturing attack taxonomy offers a holistic view of the attack chain in manufacturing systems, starting from the attack launch to the possible damages and system behavior changes within the system. Furthermore, it guides the design and development of appropriate protective and detective countermeasures by leveraging the attack realization through observed system deviations.
- Abstract(参考訳): 攻撃分類学は、サイバーセキュリティの脅威属性を体系的に理解し、特定し、分類するための一貫性のある、構造化された分類スキームを提供する。
しかし、既存の分類体系は、限られた範囲の攻撃と限定的な脅威特性にのみ焦点を当てており、サイバーセキュリティ脅威の製造に関する包括的な特徴を欠いている。
脅威アクターとその意図、サイバー攻撃による特定のシステムとマシンの行動偏差、攻撃のシステムレベルおよび運用上の意味、攻撃に対する潜在的な対策にはほとんど焦点が当てられていない。
この急激な研究ギャップを埋めるため,製造システムにおけるサイバーセキュリティ脅威の包括的理解と評価を目的とした包括的攻撃分類を提案する。
具体的には、脅威アクターの分類と、脅威イベントによるシステム行動の意図と潜在的な変化を紹介する。
提案した分類法は攻撃方法/ベクターと目標/位置を分類し、運用およびシステムレベルの攻撃効果を取り入れている。
また,対策のための分類構造を提示し,潜在的な対策の例を示し,提案した分類分類にどのように適合するかを説明する。
最後に、提案した分類法の実装は、一般的なスマート製造システムに対する2つの現実的な攻撃シナリオと、現実のサイバー物理攻撃事件と学術ケーススタディを用いて説明される。
先進的な製造業攻撃分類は、攻撃開始からシステム内の損傷やシステム行動の変化に至るまで、製造システムにおける攻撃連鎖の全体像を提供する。
さらに,観測システム偏差による攻撃の実現を利用して,適切な保護・刑事対策の設計・開発を指導する。
関連論文リスト
- Siren -- Advancing Cybersecurity through Deception and Adaptive Analysis [0.0]
このプロジェクトは、制御された環境に潜在的な脅威を引き出すための洗練された手法を採用している。
アーキテクチャフレームワークには、リンク監視プロキシ、動的リンク分析のための機械学習モデルが含まれている。
シミュレーションされたユーザアクティビティの組み入れは、潜在的攻撃者からの攻撃を捕捉し、学習するシステムの能力を拡張する。
論文 参考訳(メタデータ) (2024-06-10T12:47:49Z) - A Dual-Tier Adaptive One-Class Classification IDS for Emerging Cyberthreats [3.560574387648533]
2層構造を有する一級分類駆動型IDSシステムを提案する。
第1層は通常の活動と攻撃/脅威を区別し、第2層は検出された攻撃が未知であるかを判定する。
このモデルは、目に見えない攻撃を識別するだけでなく、目に見えない攻撃をクラスタリングすることでそれらを再トレーニングするために使用する。
論文 参考訳(メタデータ) (2024-03-17T12:26:30Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z) - Fact-Saboteurs: A Taxonomy of Evidence Manipulation Attacks against
Fact-Verification Systems [80.3811072650087]
証拠のクレームサレントスニペットを微調整し,多様かつクレームアラインな証拠を生成することが可能であることを示す。
この攻撃は、主張のポストホックな修正に対しても堅牢である。
これらの攻撃は、インスペクタブルとヒューマン・イン・ザ・ループの使用シナリオに有害な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-09-07T13:39:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Zero-shot learning approach to adaptive Cybersecurity using Explainable
AI [0.5076419064097734]
本稿では,セキュリティ情報やイベント管理 (SIEM) や侵入検知 (IDS) といったサイバーセキュリティシステムで直面するアラーム浸水問題に対処する新しいアプローチを提案する。
我々は機械学習(ML)にゼロショット学習法を適用し、MLモデルによって生成された異常の予測に説明を活用する。
このアプローチでは、攻撃に関する事前の知識がなければ、それを識別し、分類に寄与する特徴を解読し、特定のカテゴリで攻撃をバケット化しようとする。
論文 参考訳(メタデータ) (2021-06-21T06:29:13Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
自動運転車やML-as-a-serviceのような生産システムでさえ、逆の入力の影響を受けやすい。
摂動入力は、攻撃を生成するために使われるメソッドに起因できるだろうか?
敵対攻撃属性の概念を導入し、敵対攻撃における攻撃可能信号の発見可能性を調べるための単純な教師付き学習実験フレームワークを作成する。
論文 参考訳(メタデータ) (2021-01-08T08:16:41Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。