論文の概要: Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches
- arxiv url: http://arxiv.org/abs/2404.00540v1
- Date: Sun, 31 Mar 2024 03:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 03:10:31.570236
- Title: Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches
- Title(参考訳): 身体的アクティブディフェンス:反逆的パッチに対するリカレントフィードバックの活用
- Authors: Lingxuan Wu, Xiao Yang, Yinpeng Dong, Liuwei Xie, Hang Su, Jun Zhu,
- Abstract要約: 敵のパッチに対するディープニューラルネットワークの脆弱性は、モデルロバスト性を高めるための多くの防衛戦略を動機付けている。
本研究では,環境情報を積極的に文脈化して,現実の3次元環境における不整合に対処するEmbodied Active Defense (EAD) を開発した。
- 参考スコア(独自算出の注目度): 37.317604316147985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vulnerability of deep neural networks to adversarial patches has motivated numerous defense strategies for boosting model robustness. However, the prevailing defenses depend on single observation or pre-established adversary information to counter adversarial patches, often failing to be confronted with unseen or adaptive adversarial attacks and easily exhibiting unsatisfying performance in dynamic 3D environments. Inspired by active human perception and recurrent feedback mechanisms, we develop Embodied Active Defense (EAD), a proactive defensive strategy that actively contextualizes environmental information to address misaligned adversarial patches in 3D real-world settings. To achieve this, EAD develops two central recurrent sub-modules, i.e., a perception module and a policy module, to implement two critical functions of active vision. These models recurrently process a series of beliefs and observations, facilitating progressive refinement of their comprehension of the target object and enabling the development of strategic actions to counter adversarial patches in 3D environments. To optimize learning efficiency, we incorporate a differentiable approximation of environmental dynamics and deploy patches that are agnostic to the adversary strategies. Extensive experiments demonstrate that EAD substantially enhances robustness against a variety of patches within just a few steps through its action policy in safety-critical tasks (e.g., face recognition and object detection), without compromising standard accuracy. Furthermore, due to the attack-agnostic characteristic, EAD facilitates excellent generalization to unseen attacks, diminishing the averaged attack success rate by 95 percent across a range of unseen adversarial attacks.
- Abstract(参考訳): 敵のパッチに対するディープニューラルネットワークの脆弱性は、モデルロバスト性を高めるための多くの防衛戦略を動機付けている。
しかし、優勢な防御は、敵のパッチに対抗するために単一の観察または事前確立された敵の情報に依存しており、しばしば目に見えない、あるいは適応的な敵の攻撃に直面しず、動的3D環境では容易に不満足なパフォーマンスを示す。
アクティブな人間の知覚と繰り返しのフィードバックのメカニズムに触発されて,環境情報を積極的にコンテキスト化して,現実の3次元環境における不整合に対処する,積極的な防御戦略であるEmbodied Active Defense(EAD)を開発した。
これを実現するために、ERDは2つの中心的リカレントサブモジュール、すなわち知覚モジュールとポリシーモジュールを開発し、アクティブビジョンの2つの重要な機能を実装する。
これらのモデルは、一連の信念と観察を反復的に処理し、対象物の理解を段階的に洗練させ、3D環境における敵のパッチに対抗するための戦略行動の開発を可能にする。
学習効率を最適化するために、環境力学の微分可能な近似を導入し、敵の戦略に依存しないパッチをデプロイする。
大規模な実験により、EDAは標準精度を損なうことなく、安全クリティカルなタスク(例えば、顔認識や物体検出)におけるアクションポリシーを通じて、いくつかのステップで様々なパッチに対する堅牢性を大幅に向上することが示された。
さらに、攻撃非依存的な特徴から、ERDは無敵攻撃に対する優れた一般化を促進し、無敵攻撃の範囲で平均的な攻撃成功率を95%低下させる。
関連論文リスト
- Game-Theoretic Defenses for Robust Conformal Prediction Against Adversarial Attacks in Medical Imaging [12.644923600594176]
敵対的攻撃は、ディープラーニングモデルの信頼性と安全性に重大な脅威をもたらす。
本稿では,共形予測とゲーム理論の防衛戦略を統合する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-07T02:20:04Z) - Real-world Adversarial Defense against Patch Attacks based on Diffusion Model [34.86098237949215]
本稿では,DIFfusionをベースとした新しいDeFenderフレームワークであるDIFFenderを紹介する。
我々のアプローチの核心は、AAP(Adversarial Anomaly Perception)現象の発見である。
DIFFenderは、統一拡散モデルフレームワークにパッチのローカライゼーションと復元のタスクをシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-14T10:38:35Z) - Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
論文 参考訳(メタデータ) (2024-08-20T02:00:02Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks [34.86098237949214]
敵対的攻撃、特にパッチ攻撃は、ディープラーニングモデルの堅牢性と信頼性に重大な脅威をもたらす。
本稿では,テキスト誘導拡散モデルを用いてパッチ攻撃に対処する新しい防御フレームワークであるDIFFenderを紹介する。
DIFFenderは、パッチのローカライゼーションと復元の2つのタスクを単一の拡散モデルフレームワークに統合する。
論文 参考訳(メタデータ) (2023-06-15T13:33:27Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。