Neural Control: Concurrent System Identification and Control Learning with Neural ODE
- URL: http://arxiv.org/abs/2401.01836v4
- Date: Mon, 22 Apr 2024 16:43:11 GMT
- Title: Neural Control: Concurrent System Identification and Control Learning with Neural ODE
- Authors: Cheng Chi,
- Abstract summary: We propose a neural ODE based method for controlling unknown dynamical systems, denoted as Neural Control (NC)
Our model concurrently learns system dynamics as well as optimal controls that guides towards target states.
Our experiments demonstrate the effectiveness of our model for learning optimal control of unknown dynamical systems.
- Score: 13.727727205587804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling continuous-time dynamical systems is generally a two step process: first, identify or model the system dynamics with differential equations, then, minimize the control objectives to achieve optimal control function and optimal state trajectories. However, any inaccuracy in dynamics modeling will lead to sub-optimality in the resulting control function. To address this, we propose a neural ODE based method for controlling unknown dynamical systems, denoted as Neural Control (NC), which combines dynamics identification and optimal control learning using a coupled neural ODE. Through an intriguing interplay between the two neural networks in coupled neural ODE structure, our model concurrently learns system dynamics as well as optimal controls that guides towards target states. Our experiments demonstrate the effectiveness of our model for learning optimal control of unknown dynamical systems. Codes available at https://github.com/chichengmessi/neural_ode_control/tree/main
Related papers
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) controllers are a novel class of neural network-based controllers for dynamical systems.
Hion controllers estimate future states and compute optimal control inputs using Pontryagin's Principle.
arXiv Detail & Related papers (2024-11-02T16:06:29Z) - Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand.
This paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling.
arXiv Detail & Related papers (2022-11-13T17:48:04Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - Near-optimal control of dynamical systems with neural ordinary
differential equations [0.0]
Recent advances in deep learning and neural network-based optimization have contributed to the development of methods that can help solve control problems involving high-dimensional dynamical systems.
We first analyze how truncated and non-truncated backpropagation through time affect runtime performance and the ability of neural networks to learn optimal control functions.
arXiv Detail & Related papers (2022-06-22T14:11:11Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
We use neural inference to mediate between the neural System 1 and the logical System 2.
Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.
arXiv Detail & Related papers (2021-07-06T17:59:49Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Deep Learning of Koopman Representation for Control [0.0]
The proposed approach relies on the Deep Neural Network based learning of Koopman operator for the purpose of control.
The controller is purely data-driven and does not rely on a priori domain knowledge.
The method is applied to two classic dynamical systems on OpenAI Gym environment to demonstrate the capability.
arXiv Detail & Related papers (2020-10-15T06:41:24Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
arXiv Detail & Related papers (2020-09-09T12:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.