論文の概要: ICE-GRT: Instruction Context Enhancement by Generative Reinforcement
based Transformers
- arxiv url: http://arxiv.org/abs/2401.02072v1
- Date: Thu, 4 Jan 2024 05:47:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 15:56:27.550490
- Title: ICE-GRT: Instruction Context Enhancement by Generative Reinforcement
based Transformers
- Title(参考訳): ICE-GRT:生成強化型変換器による指示文脈の強化
- Authors: Chen Zheng, Ke Sun, Da Tang, Yukun Ma, Yuyu Zhang, Chenguang Xi, Xun
Zhou
- Abstract要約: 近接政策最適化(PPO)に基づく人間フィードバック(RLHF)からの強化学習を活用したICE-GRTを導入する。
ICE-GRTの探索は、堅牢な回答を生成するだけでなく、その答えの背後にある理由を詳細に分析するための理解と推論能力を強調している。
ICE-GRTモデルは、ドメイン固有のタスクや12の汎用言語タスクにおいて、同等のサイズとさらに大きなLLMに対して、最先端のパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 24.650024753993957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) such as ChatGPT and LLaMA
encounter limitations in domain-specific tasks, with these models often lacking
depth and accuracy in specialized areas, and exhibiting a decrease in general
capabilities when fine-tuned, particularly analysis ability in small sized
models. To address these gaps, we introduce ICE-GRT, utilizing Reinforcement
Learning from Human Feedback (RLHF) grounded in Proximal Policy Optimization
(PPO), demonstrating remarkable ability in in-domain scenarios without
compromising general task performance. Our exploration of ICE-GRT highlights
its understanding and reasoning ability to not only generate robust answers but
also to provide detailed analyses of the reasons behind the answer. This
capability marks a significant progression beyond the scope of Supervised
Fine-Tuning models. The success of ICE-GRT is dependent on several crucial
factors, including Appropriate Data, Reward Size Scaling, KL-Control, Advantage
Normalization, etc. The ICE-GRT model exhibits state-of-the-art performance in
domain-specific tasks and across 12 general Language tasks against equivalent
size and even larger size LLMs, highlighting the effectiveness of our approach.
We provide a comprehensive analysis of the ICE-GRT, underscoring the
significant advancements it brings to the field of LLM.
- Abstract(参考訳): chatgptやllamaといった大規模言語モデル(llm)の出現は、専門分野における深さや精度の欠如や、微調整時の一般的な能力の低下、特に小規模モデルにおける分析能力の低下など、ドメイン固有のタスクに制限が伴う。
これらのギャップに対処するために,PPO(Proximal Policy Optimization)に基づくRLHF(Reinforcement Learning from Human Feedback)を活用するICE-GRTを導入する。
ICE-GRTの探索は、堅牢な回答を生成するだけでなく、その答えの背後にある理由を詳細に分析するための理解と推論能力を強調している。
この機能は、Supervised Fine-Tuningモデルの範囲を超えて大幅に進歩している。
ICE-GRTの成功は、適切なデータ、リワードサイズスケーリング、KL-Control、アドバンテージ正規化など、いくつかの重要な要因に依存している。
ICE-GRTモデルは、ドメイン固有タスクおよび12の汎用言語タスクにおいて、同等のサイズとさらに大きなLLMに対して最先端の性能を示す。
我々はICE-GRTを包括的に分析し、それがLLMの分野にもたらす重要な進歩を裏付ける。
関連論文リスト
- RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
大規模言語モデル(LLM)は目覚ましい性能を達成したが、高い計算コストとレイテンシに直面している。
Retrieval-augmented Generation (RAG) は、外部知識を統合するのに役立つが、不完全な検索は、SLMを誤解させるノイズを引き起こす可能性がある。
我々は、Margin-aware Preference Optimizationを通じて、SLMのための堅牢なRAGフレームワークであるRoseRAGを提案する。
論文 参考訳(メタデータ) (2025-02-16T04:56:53Z) - Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning [14.857842644246634]
本稿では,SG(Solution Guidance)およびSGFT(Solution-Guidance Fine-Tuning)について紹介する。
SGは、特定の計算ではなく、意味的および論理的なレベルでの問題理解と分解に焦点を当てている。
SGFTは、SLMを微調整して正確な問題解決ガイダンスを生成することができ、任意のSLMにプロンプトとして柔軟に供給することができる。
論文 参考訳(メタデータ) (2024-12-13T06:45:26Z) - From Multimodal LLMs to Generalist Embodied Agents: Methods and Lessons [85.99268361356832]
一般身体エージェント(GEA)にMLLMを適用するプロセスを紹介する。
GEAは、多体アクショントークンーザを通じて、さまざまなドメインにまたがって自分自身をグラウンド化できる単一の統一モデルである。
本研究は,汎用エージェント構築のためのクロスドメインデータとオンラインRLを用いたトレーニングの重要性を明らかにした。
論文 参考訳(メタデータ) (2024-12-11T15:06:25Z) - GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments [1.0558515062670693]
現実世界のシナリオにおける大規模言語モデル(LLM)は依然として重要な課題である。
これらの課題は、しばしばメモリ使用率、レイテンシ、スループットの非効率につながる。
バッチレイテンシ、TTFT、デコードスループットといった主要なメトリクスに対して、予測エラーを9.9%から42.3%の精度で達成し、これらの問題に対処するフレームワークを開発する。
論文 参考訳(メタデータ) (2024-12-06T05:46:43Z) - Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
微調整MLLMは、特定の下流タスクのパフォーマンスを改善するための一般的なプラクティスとなっている。
一般化と特殊化のトレードオフのバランスをとるために,事前学習と微調整の両方におけるパラメータの重要度を測定することを提案する。
論文 参考訳(メタデータ) (2024-11-17T01:16:37Z) - Mixing It Up: The Cocktail Effect of Multi-Task Fine-Tuning on LLM Performance -- A Case Study in Finance [0.32985979395737774]
本稿では,ドメイン固有タスクのための細調整型大規模言語モデル (LLM) の詳細な解析を行う。
ドメイン固有のケースでは、ターゲットタスクのみを微調整することが、必ずしも最も効果的な戦略ではないことが分かりました。
我々は、Phi-3-Miniのような小さなモデルが、どのようにして最先端の結果が得られるかを実証する。
論文 参考訳(メタデータ) (2024-10-01T22:35:56Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
性能ギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
本稿では,タスク固有の方向性 (TSD) の概念に着目し,大規模モデルを事前学習状態からPEFTにおけるタスク固有の拡張へ移行させる。
本稿では,微調整過程におけるTSDの影響を最大化し,目標タスクにおけるモデル性能を向上させることを目的とした新しいアプローチであるLoRA-Dashを紹介する。
論文 参考訳(メタデータ) (2024-09-02T08:10:51Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
大規模言語モデル(LLM)に固有の内在的一般化能力に微調整が及ぼす影響について検討する。
本研究の主目的は、生成タスクと分類タスクを微調整したモデルが、異なる領域やタスクに一般化する際に異なる振る舞いを示すことである。
生成タスクの微調整中にコンテキスト内学習戦略を統合することで、モデルの一般化能力を高めることができる。
論文 参考訳(メタデータ) (2024-03-14T08:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。