論文の概要: DeepRTL2: A Versatile Model for RTL-Related Tasks
- arxiv url: http://arxiv.org/abs/2506.15697v1
- Date: Wed, 28 May 2025 09:28:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-29 09:28:14.761131
- Title: DeepRTL2: A Versatile Model for RTL-Related Tasks
- Title(参考訳): DeepRTL2: RTL関連タスクのVersatile Model
- Authors: Yi Liu, Hongji Zhang, Yunhao Zhou, Zhengyuan Shi, Changran Xu, Qiang Xu,
- Abstract要約: 提案するDeepRTL2は,RTLに関連する生成タスクと埋め込みタスクの両方を統一する汎用大規模言語モデル(LLM)のファミリーである。
幅広いタスクに同時に取り組むことで、DeepRTL2は、EDAのさまざまな課題に対する包括的なソリューションを提供する最初のモデルである。
- 参考スコア(独自算出の注目度): 10.44277146824812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of large language models (LLMs) into electronic design automation (EDA) has significantly advanced the field, offering transformative benefits, particularly in register transfer level (RTL) code generation and understanding. While previous studies have demonstrated the efficacy of fine-tuning LLMs for these generation-based tasks, embedding-based tasks, which are equally critical to EDA workflows, have been largely overlooked. These tasks, including natural language code search, RTL code functionality equivalence checking, and performance prediction, are essential for accelerating and optimizing the hardware design process. To address this gap, we present DeepRTL2, a family of versatile LLMs that unifies both generation- and embedding-based tasks related to RTL. By simultaneously tackling a broad range of tasks, DeepRTL2 represents the first model to provide a comprehensive solution to the diverse challenges in EDA. Through extensive experiments, we show that DeepRTL2 achieves state-of-the-art performance across all evaluated tasks.
- Abstract(参考訳): 大規模言語モデル (LLM) を電子設計自動化 (EDA) に統合することで、特にレジスタ転送レベル (RTL) のコード生成と理解において、トランスフォーメーションのメリットを提供する。
従来の研究では、これらの世代ベースのタスクに対する微調整LDMの有効性が実証されてきたが、EDAワークフローに等しく重要な埋め込みベースのタスクは、ほとんど見過ごされてきた。
自然言語コード検索、RTLコード機能の等価性チェック、性能予測といったこれらのタスクは、ハードウェア設計プロセスの高速化と最適化に不可欠である。
このギャップに対処するため、我々は、RTLに関連する生成タスクと埋め込みタスクの両方を統一する汎用LLMのファミリーであるDeepRTL2を提案する。
幅広いタスクに同時に取り組むことで、DeepRTL2は、EDAのさまざまな課題に対する包括的なソリューションを提供する最初のモデルである。
実験により,DeepRTL2はすべての評価タスクにおいて最先端のパフォーマンスを実現することを示す。
関連論文リスト
- Evaluating Large Language Models on Non-Code Software Engineering Tasks [4.381476817430934]
大規模言語モデル(LLM)は、コード理解と生成において顕著な能力を示している。
ソフトウェア工学言語理解(SELU)と呼ばれる最初の包括的なベンチマークを提示する。
SELUは、分類、回帰、名前付きエンティティ認識(NER)とマスケッド言語モデリング(MLM)のターゲットをカバーし、さまざまなソースからデータを引き出す。
論文 参考訳(メタデータ) (2025-06-12T15:52:32Z) - EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
大規模言語モデル(LLM)を評価するためのEIFBENCH(Extremely Complex Instruction following Benchmark)を提案する。
EIFBENCHにはマルチタスクシナリオが含まれており、多様なタスクタイプを同時に総合的に評価することができる。
また,LLMのマルチタスクワークフローを正確に満たす能力を高めるために,セグメントポリシー最適化(SegPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-10T02:39:55Z) - RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation [6.428086269916113]
RTLRepoCoderは,レポジトリレベルのVerilogコード補完のために,特定の微調整および検索型拡張生成(RAG)を組み込んだ画期的なソリューションである。
提案手法は,GPT-4 および高度なドメイン固有 LLM の編集類似性および実行一致率を大幅に上回る,公開ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2025-04-11T09:04:50Z) - TuRTLe: A Unified Evaluation of LLMs for RTL Generation [0.6010802600885173]
本研究では,主要なRTL生成タスク間でLLMを評価するための統合評価フレームワークTuRTLeを提案する。
オープンLLMの多様なセットをベンチマークし、EDA固有のタスクの長所と短所を分析します。
以上の結果から,DeepSeek R1のような推論モデルの方が,複数の評価基準で常に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-03-31T07:43:12Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
本稿では,低速エージェントと高速エージェントからなる2レベル階層型フレームワークRL-GPTを提案する。
遅いエージェントはコーディングに適したアクションを分析し、速いエージェントはコーディングタスクを実行する。
この分解は、各エージェントが特定のタスクに効果的に集中し、パイプライン内で非常に効率的なことを証明します。
論文 参考訳(メタデータ) (2024-02-29T16:07:22Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
マルチタスク学習(MTL)は、複数の学習タスクを単一のモデルにカプセル化し、それらのタスクを共同でよりよく学習できるようにする。
現在のMTLレギュレータは、1つのタスクだけを実行するためにさえ、ほぼすべてのモデルを起動する必要がある。
効率的なオンデバイスMTLを実現するためのモデル-アクセラレータ共設計フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T15:40:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。