Breeding protocols are advantageous for finite-length entanglement
distillation
- URL: http://arxiv.org/abs/2401.02265v2
- Date: Thu, 1 Feb 2024 09:24:25 GMT
- Title: Breeding protocols are advantageous for finite-length entanglement
distillation
- Authors: Ryutaroh Matsumoto
- Abstract summary: We propose a framework of converting a stabilizer quantum error-correcting code to a breeding protocol.
In this paper, we show an example of a stabilizer that gives a breeding protocol better than hashing protocols.
- Score: 0.5439020425818999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bennett et al. proposed a family of protocols for entanglement distillation,
namely, hashing, recurrence and breeding protocols. The last one is inferior to
the hashing protocol in the asymptotic regime and has been investigated little.
In this paper, we propose a framework of converting a stabilizer quantum
error-correcting code to a breeding protocol, which is a generalization of the
previous conversion methods by Luo-Devetak and Wilde. Then, show an example of
a stabilizer that gives a breeding protocol better than hashing protocols, in
which the finite number of maximally entangled pairs are distilled from the
finite number of partially entangled pairs.
Related papers
- A Novel Stabilizer-based Entanglement Distillation Protocol for Qudits [0.016385815610837167]
Entanglement distillation is pivotal for robust quantum information processing in error-prone environments.
A construction based on stabilizer codes offers an effective method for designing such protocols.
We present a novel two-copy distillation protocol that maximizes the fidelity increase per iteration for Bell-diagonal states in any prime dimension.
arXiv Detail & Related papers (2024-08-05T11:14:28Z) - Statistical evaluation and optimization of entanglement purification protocols [0.0]
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices.
We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector.
arXiv Detail & Related papers (2024-02-19T16:58:03Z) - Entanglement Purification of Hypergraph States [0.0]
Entanglement purification describes a primitive in quantum information processing, where several copies of noisy quantum states are distilled into few copies of nearly-pure states of high quality.
We present optimized protocols for the purification of hypergraph states, which form a family of multi-qubit states that are relevant from several perspectives.
arXiv Detail & Related papers (2023-01-26T19:00:01Z) - Optimal two-qubit gates in recurrence protocols of entanglement purification [0.0]
The proposed method is based on a numerical search in the whole set of SU(4) matrices with the aid of a quasi-Newton algorithm.
We show for certain families of states that optimal protocols are not necessarily achieved by bilaterally applied controlled-NOT gates.
arXiv Detail & Related papers (2022-05-24T14:13:56Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Optimal supplier of single-error-type entanglement via coherent-state
transmission [1.2891210250935146]
We consider protocol that presents single-error-type entanglement for distant qubits via coherent-state transmission over a lossy channel.
This protocol is regarded as a subroutine to serve entanglement for larger protocol to yield a final output, such as ebits or pbits.
arXiv Detail & Related papers (2022-03-31T15:36:54Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.