論文の概要: Data-Centric Foundation Models in Computational Healthcare: A Survey
- arxiv url: http://arxiv.org/abs/2401.02458v1
- Date: Thu, 4 Jan 2024 08:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 16:50:22.374405
- Title: Data-Centric Foundation Models in Computational Healthcare: A Survey
- Title(参考訳): 計算医療におけるデータ中心の基礎モデルに関する研究
- Authors: Yunkun Zhang, Jin Gao, Zheling Tan, Lingfeng Zhou, Kexin Ding, Mu
Zhou, Shaoting Zhang, Dequan Wang
- Abstract要約: AI技術の新たなスイートとしてのファンデーションモデル(FM)は、計算医療の波を巻き起こしている。
我々は、AIセキュリティ、アセスメント、および人間の価値との整合性における重要な視点について議論する。
本報告では,患者の予後と臨床ワークフローを向上するために,FMベースの分析を期待できる展望を提供する。
- 参考スコア(独自算出の注目度): 22.459507690070463
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advent of foundation models (FMs) as an emerging suite of AI techniques
has struck a wave of opportunities in computational healthcare. The interactive
nature of these models, guided by pre-training data and human instructions, has
ignited a data-centric AI paradigm that emphasizes better data
characterization, quality, and scale. In healthcare AI, obtaining and
processing high-quality clinical data records has been a longstanding
challenge, ranging from data quantity, annotation, patient privacy, and ethics.
In this survey, we investigate a wide range of data-centric approaches in the
FM era (from model pre-training to inference) towards improving the healthcare
workflow. We discuss key perspectives in AI security, assessment, and alignment
with human values. Finally, we offer a promising outlook of FM-based analytics
to enhance the performance of patient outcome and clinical workflow in the
evolving landscape of healthcare and medicine. We provide an up-to-date list of
healthcare-related foundation models and datasets at
https://github.com/Yunkun-Zhang/Data-Centric-FM-Healthcare .
- Abstract(参考訳): 新たなai技術のスイートとしての基盤モデル(fms)の出現は、計算医療における多くの機会を生み出した。
これらのモデルのインタラクティブな性質は、事前トレーニングされたデータと人間の指示によって導かれ、より良いデータ特徴、品質、スケールを強調するデータ中心のAIパラダイムに着火した。
医療AIでは、データ量、アノテーション、患者のプライバシ、倫理など、高品質な臨床データの取得と処理が長年にわたる課題となっている。
本研究では,fm時代(モデル事前トレーニングから推論まで)の医療ワークフロー改善に向けて,幅広いデータ中心アプローチを調査した。
我々は、aiセキュリティ、アセスメント、人間価値との整合における重要な視点について論じる。
最後に,fmベースの分析の展望を提供し,医療と医療の発展の展望における患者の成果と臨床ワークフローのパフォーマンスを向上させる。
医療関連基盤モデルとデータセットの最新のリストはhttps://github.com/Yunkun-Zhang/Data-Centric-FM-Healthcare で公開しています。
関連論文リスト
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
医療用語を患者に親しみやすい平易な言語に簡略化することを目的とした,レイ定義の自動生成という新たなタスクを導入する。
このデータセットは、5万以上のユニークな(医療用語、日常の定義)ペアと30万の言及からなる。
また、データフィルタリング、拡張、選択を相乗化してデータ品質を改善する、データ中心のHuman-AIパイプラインも開発しました。
論文 参考訳(メタデータ) (2023-12-24T23:01:00Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。