論文の概要: Foundation models for electronic health records: representation dynamics and transferability
- arxiv url: http://arxiv.org/abs/2504.10422v1
- Date: Mon, 14 Apr 2025 17:09:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:50:21.541408
- Title: Foundation models for electronic health records: representation dynamics and transferability
- Title(参考訳): 電子健康記録の基礎モデル:表現力学と伝達可能性
- Authors: Michael C. Burkhart, Bashar Ramadan, Zewei Liao, Kaveri Chhikara, Juan C. Rojas, William F. Parker, Brett K. Beaulieu-Jones,
- Abstract要約: 電子健康記録に基づいてトレーニングされたファンデーションモデル(FM)は、様々な臨床予測タスクにおいて高いパフォーマンスを示した。
シカゴ大学メディカルセンターにおいて,MIMIC-IVで訓練したFMの施設EHRデータセットへの転送可能性について検討した。
外来患者を識別する能力について検討し, 今後の臨床成績との関連性について検討した。
- 参考スコア(独自算出の注目度): 0.16070672161045726
- License:
- Abstract: Foundation models (FMs) trained on electronic health records (EHRs) have shown strong performance on a range of clinical prediction tasks. However, adapting these models to local health systems remains challenging due to limited data availability and resource constraints. In this study, we investigated what these models learn and evaluated the transferability of an FM trained on MIMIC-IV to an institutional EHR dataset at the University of Chicago Medical Center. We assessed their ability to identify outlier patients and examined representation-space patient trajectories in relation to future clinical outcomes. We also evaluated the performance of supervised fine-tuned classifiers on both source and target datasets. Our findings offer insights into the adaptability of FMs across different healthcare systems, highlight considerations for their effective implementation, and provide an empirical analysis of the underlying factors that contribute to their predictive performance.
- Abstract(参考訳): 電子健康記録(EHR)に基づいてトレーニングされたファンデーションモデル(FM)は,様々な臨床予測タスクにおいて高いパフォーマンスを示した。
しかし、これらのモデルをローカルヘルスシステムに適用することは、限られたデータ可用性とリソース制約のため、依然として困難である。
そこで本研究では,シカゴ大学医学部におけるMIMIC-IVをトレーニングしたFMの組織的EHRデータセットへの転送可能性について検討した。
外来患者を識別する能力について検討し, 今後の臨床成績との関連性について検討した。
また,教師付き微調整分類器の性能を,ソースデータとターゲットデータの両方で評価した。
本研究は,異なる医療システムにおけるFMの適応性に関する知見を提供し,その効果的な実装について考察し,予測性能に寄与する要因を実証分析した。
関連論文リスト
- Machine Learning-Based Prediction of ICU Readmissions in Intracerebral Hemorrhage Patients: Insights from the MIMIC Databases [0.0]
脳内出血(英:cerebral hemorrhage、ICH)は、脳内出血を特徴とする生命リスクの病態である。
本研究は,集中治療のための医療情報マート(MIMIC-IIIおよびMIMIC-IV)データベースを用いて,ICU受信リスク予測モデルを開発した。
論文 参考訳(メタデータ) (2025-01-02T10:19:27Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Data-Centric Foundation Models in Computational Healthcare: A Survey [21.53211505568379]
AI技術の新たなスイートとしてのファンデーションモデル(FM)は、計算医療の波を巻き起こしている。
我々は、AIセキュリティ、アセスメント、および人間の価値との整合性における重要な視点について議論する。
本報告では,患者の予後と臨床ワークフローを向上するために,FMベースの分析を期待できる展望を提供する。
論文 参考訳(メタデータ) (2024-01-04T08:00:32Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - The Shaky Foundations of Clinical Foundation Models: A Survey of Large
Language Models and Foundation Models for EMRs [5.7482228499062975]
非イメージングEMRデータに基づいて訓練された80以上の基礎モデルをレビューする。
ほとんどのモデルが、小さく、狭められた臨床データセットでトレーニングされていることが分かりました。
臨床基礎モデルの利点を評価するための評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-22T23:54:14Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。