論文の概要: Branched Variational Autoencoder Classifiers
- arxiv url: http://arxiv.org/abs/2401.02526v1
- Date: Thu, 4 Jan 2024 20:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 16:37:21.750964
- Title: Branched Variational Autoencoder Classifiers
- Title(参考訳): 分岐変分オートエンコーダ分類器
- Authors: Ahmed Salah and David Yevick
- Abstract要約: 本稿では、追加のニューラルネットワークブランチを含む変分オートエンコーダ(VAE)について紹介する。
その結果、入力クラスの潜時空間分布を分離順序付けし、分類精度を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a modified variational autoencoder (VAEs) that contains
an additional neural network branch. The resulting branched VAE (BVAE)
contributes a classification component based on the class labels to the total
loss and therefore imparts categorical information to the latent
representation. As a result, the latent space distributions of the input
classes are separated and ordered, thereby enhancing the classification
accuracy. The degree of improvement is quantified by numerical calculations
employing the benchmark MNIST dataset for both unrotated and rotated digits.
The proposed technique is then compared to and then incorporated into a VAE
with fixed output distributions. This procedure is found to yield improved
performance for a wide range of output distributions.
- Abstract(参考訳): 本稿では、追加のニューラルネットワーク分岐を含む変分オートエンコーダ(VAE)を導入する。
結果として得られた分岐VAE(BVAE)は、クラスラベルに基づく分類成分を総損失に寄与し、従って潜在表現に分類情報を付与する。
これにより、入力クラスの潜在空間分布を分離して順序付けし、分類精度を高めることができる。
改良度は、回転しない桁と回転した桁のベンチマークMNISTデータセットを用いた数値計算によって定量化される。
提案手法は, 出力分布を固定したVAEに比較し, 組み込む。
この手法により, 広範囲の出力分布の性能が向上することがわかった。
関連論文リスト
- Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
解釈可能なDeep(IDC)は、ターゲットサンプルの最も近いソースサンプルを、分類器が決定を下す証拠として学習する。
我々のIDCは、精度の劣化がほとんどなく、最適なリジェクションオプションの分類を効果的に調整する、より説明可能なモデルに導かれる。
論文 参考訳(メタデータ) (2022-11-15T15:58:56Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - On the rate of convergence of a classifier based on a Transformer
encoder [55.41148606254641]
最適誤分類確率に対する分類器の誤分類確率の収束率を分析する。
この分類器は,アポテリオリ確率が適切な階層的構成モデルを満たす場合,次元性の呪いを回避することができる。
論文 参考訳(メタデータ) (2021-11-29T14:58:29Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Consistency Regularization for Variational Auto-Encoders [14.423556966548544]
変分自動エンコーダ(VAE)は教師なし学習の強力なアプローチである。
本稿では,VAEの整合性を強制する正規化手法を提案する。
論文 参考訳(メタデータ) (2021-05-31T10:26:32Z) - Convolutional Dynamic Alignment Networks for Interpretable
Classifications [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA-Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
コアとなるビルディングブロックは動的アライメントユニット(DAU)で、入力をタスク関連パターンと動的に整合する重みベクトルで線形に変換する。
CoDA-Netsは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-03-31T18:03:53Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-05-21T06:11:33Z) - Diversity-Aware Weighted Majority Vote Classifier for Imbalanced Data [1.2944868613449219]
多様性を考慮したアンサンブル学習に基づくアルゴリズム DAMVI を提案する。
本稿では, 予測保守作業, クレジットカード不正検出, ウェブページ分類, 医療応用に関する最先端モデルに関して, 提案手法の効率性を示す。
論文 参考訳(メタデータ) (2020-04-16T11:27:50Z) - GIM: Gaussian Isolation Machines [40.7916016364212]
多くの場合、ニューラルネットワーク分類器は、トレーニング配布データの外にある入力データに露出する。
OODデータに遭遇した場合に発生する問題の解決を目的とした,新しいハイブリッド分類器を提案する。
提案されたGIMの新規性は、識別性能と生成能力にある。
論文 参考訳(メタデータ) (2020-02-06T09:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。