論文の概要: Characteristics and prevalence of fake social media profiles with
AI-generated faces
- arxiv url: http://arxiv.org/abs/2401.02627v1
- Date: Fri, 5 Jan 2024 04:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 16:07:27.379357
- Title: Characteristics and prevalence of fake social media profiles with
AI-generated faces
- Title(参考訳): AI生成顔を用いた偽ソーシャルメディアプロファイルの特徴と頻度
- Authors: Kai-Cheng Yang, Danishjeet Singh, Filippo Menczer
- Abstract要約: 生成的人工知能の最近の進歩は、偽のソーシャルメディアアカウントを偽造する可能性を懸念している。
本稿では,GAN(Generative Adrial Networks)が生成した人物のプロフィール画像を用いたTwitter(X)アカウントの体系的解析を行う。
我々は、詐欺、スパム、調整されたメッセージの増幅など、不正行為の拡散に使われていることを示す。
- 参考スコア(独自算出の注目度): 8.367075755850983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in generative artificial intelligence (AI) have raised
concerns about their potential to create convincing fake social media accounts,
but empirical evidence is lacking. In this paper, we present a systematic
analysis of Twitter(X) accounts using human faces generated by Generative
Adversarial Networks (GANs) for their profile pictures. We present a dataset of
1,353 such accounts and show that they are used to spread scams, spam, and
amplify coordinated messages, among other inauthentic activities. Leveraging a
feature of GAN-generated faces -- consistent eye placement -- and supplementing
it with human annotation, we devise an effective method for identifying
GAN-generated profiles in the wild. Applying this method to a random sample of
active Twitter users, we estimate a lower bound for the prevalence of profiles
using GAN-generated faces between 0.021% and 0.044% -- around 10K daily active
accounts. These findings underscore the emerging threats posed by multimodal
generative AI. We release the source code of our detection method and the data
we collect to facilitate further investigation. Additionally, we provide
practical heuristics to assist social media users in recognizing such accounts.
- Abstract(参考訳): 生成人工知能(AI)の最近の進歩は、偽のソーシャルメディアアカウントを偽造する可能性を懸念しているが、実証的な証拠は乏しい。
本稿では,GAN(Generative Adversarial Networks)が生成した人物のプロフィール画像を用いたTwitter(X)アカウントの体系的解析を行う。
1,353件のアカウントのデータセットを提示し、詐欺、スパム、調整済みメッセージの増幅などに利用されていることを示す。
GAN生成顔の特徴(一貫した眼の配置)を活用し、それを人間のアノテーションで補うことで、野生のGAN生成顔の識別に有効な方法を考案した。
この手法をアクティブなtwitterユーザーのランダムなサンプルに適用し、ganが生成した顔によるプロフィールの有病率を0.021%から0.044%に下げる。
これらの発見は、マルチモーダル生成AIがもたらす脅威を浮き彫りにしている。
我々は,検出手法のソースコードと収集したデータを公開し,さらなる調査を行う。
また,ソーシャルメディア利用者のアカウント認識を支援する実践的ヒューリスティックスも提供する。
関連論文リスト
- Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
AI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯したりする危険性が高まっている。
この研究は、従来の単一モダリティ手法から、音声・視覚・テキスト・視覚シナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
私たちの知る限りでは、この種の調査はこれが初めてである。
論文 参考訳(メタデータ) (2024-06-11T05:48:04Z) - AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark [12.368133562194267]
AI-Faceデータセットは、人口統計学的にアノテートされた最初のAI生成顔画像データセットである。
このデータセットに基づいて、さまざまなAI顔検出装置を評価するために、最初の総合的公正度ベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-02T15:51:33Z) - AI-Generated Faces in the Real World: A Large-Scale Case Study of Twitter Profile Images [26.891299948581782]
われわれは,Twitter上でAI生成プロフィール画像の普及状況について,大規模な調査を行った。
約1500万枚のTwitterプロフィール写真を分析したところ、0.052%が人工的に生成され、プラットフォーム上での存在が確認された。
結果は、スパムや政治的増幅キャンペーンなど、いくつかの動機も明らかにしている。
論文 参考訳(メタデータ) (2024-04-22T14:57:17Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - My Face My Choice: Privacy Enhancing Deepfakes for Social Media
Anonymization [4.725675279167593]
仮説的ソーシャルネットワークに3つの顔アクセスモデルを導入し、ユーザーが承認した写真にのみ現れる能力を持つ。
我々のアプローチは、現在のタグ付けシステムを廃止し、未承認の顔を定量的に異なるディープフェイクに置き換える。
その結果,7つのSOTA顔認識器を動作させることで,平均精度を61%削減できることがわかった。
論文 参考訳(メタデータ) (2022-11-02T17:58:20Z) - Detecting fake accounts through Generative Adversarial Network in online
social media [0.0]
本稿では,ユーザ類似度尺度とGANアルゴリズムを用いて,Twitterデータセット内の偽ユーザアカウントを識別する手法を提案する。
問題の複雑さにもかかわらず、この方法は偽アカウントの分類と検出において80%のAUCレートを達成する。
論文 参考訳(メタデータ) (2022-10-25T10:20:27Z) - Open-Eye: An Open Platform to Study Human Performance on Identifying
AI-Synthesized Faces [51.56417104929796]
我々は、AI合成顔検出の人的パフォーマンスを研究するために、Open-eyeと呼ばれるオンラインプラットフォームを開発した。
本稿では,オープンアイの設計とワークフローについて述べる。
論文 参考訳(メタデータ) (2022-05-13T14:30:59Z) - Generating Master Faces for Dictionary Attacks with a Network-Assisted
Latent Space Evolution [68.8204255655161]
マスターフェイス(英: master face)とは、人口の大部分が顔に基づくアイデンティティ認証を通した顔画像である。
そこで我々は,StyleGANフェイスジェネレータの潜伏埋め込み空間における進化的アルゴリズムを用いて,これらの顔の最適化を行う。
論文 参考訳(メタデータ) (2021-08-01T12:55:23Z) - Face Forensics in the Wild [121.23154918448618]
我々は、ffiw-10kと呼ばれる新しい大規模データセットを構築し、高品質の偽造ビデオ1万本を含む。
操作手順は完全自動で、ドメイン対逆品質評価ネットワークによって制御されます。
さらに,多人数顔偽造検出の課題に取り組むための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T05:06:19Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。